
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 92-97

92 | P a g e

STUDY OF VARIOUS QUALITY METRICS

SUITABLE FOR THE OBJECT ORIENTED

ENVIRONMENT

Sharqua Reyaz1, Dipti Ranjan2,

Department Of Computer Science
1Lucknow Institute of Technology, Lucknow
2Lucknow Institute of Technology, Lucknow

Uttar Pradesh, India

Abstract— Software metrics is broad terms for all those actions

which entails some degree of software measurement and are

anticipated to measure the software quality as well as

performance characteristics quantitatively. These can serve as

measures of software products for the purpose of comparison,

fault prediction, cost estimation and forecasting. This study is

based on the data from a large open source project The

JFreeChart available at one of the largest storehouses of open

source projects www.sourceforge.net. In this paper we study over

57 versions of this project released in the time period from 2000

to 2016.

Index Terms— OO Metrics, S/w Metrics, S/w Quality.

I. INTRODUCTION

IEEE defines a quality factor as “a management-oriented

attribute of a software that contributes to its quality”. A metric

is a measurement function, and a software quality metric is a

“function whose inputs are software data and whose output is a

single numeric value that can be interpreted as a degree to

which software possesses a given attribute that affects its

quality”.

The true value of product metrics comes from their

association with measures of important external quality

attributes. An external attribute is measured with respect to

how the product relates to its environment. Examples of

external attributes are testability, reliability, maintainability etc.

Software quality assurance is one of the most important

components in software project management. Research on

various perspectives of software quality and related activities

has been conducted for several decades, and many conclusions

and practices have been presented to improve software quality.

One aspect of the research in this area is to establish software

quality estimation models that could be used at the early stages

of a project to estimate the quality level. The estimation results

can act as a guideline to enhance the quality assurance

performance.

A. Software Metrics

Software metrics are quantifiable measures that could be

used to measure different characteristics of a software system

or the software development process.

Measurement in the physical world can be categorized in

two ways – direct measures and indirect measures. Software

metrics can be categorized similarly. Direct measures of the

software engineering process include cost and effort applied.

Direct measure of the product includes line of the product,

execution speed, memory size and defect reporting over some

set period of time. Indirect measures of the product include

functionality, quality, complexity, efficiency and reliability etc.

software engineering is a stable, quantitative engineering

discipline. Its stability arises from the wide range of metrics

evolved by software engineers to measure various aspects of

the software. The advantage of metrics is that you can measure

in quantitative terms the different aspects of software that need

evaluation on an ongoing basis for estimation.

B. Measuring Quality

Measurement enables to improve the software process,

assist in the planning, tracking the control of a design. A good

software engineer uses measurements to assess the quality of

the analysis and design model, the source code, the test cases,

etc. What does quality mean?

Quality refers to the inherent or distinctive characteristics

or property of object, process or other thing. Such

characteristics or properties may set things apart from other

things, or may denote some degree of achievement or

excellence. Many quality measures can be collected from

literature, the main goal of metrics is to measure errors and

defects. The following quality factor should have every metric.

The main quality characteristics (Reusability, Reliability,

Complexity and Maintainability) are available in almost all

quality models. However, researchers differ while choosing

sub characteristics under these characteristics.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 92-97

93 | P a g e

II. LITERATURE REVIEW

Ferreira et al. presented a study carried out on a large

sample of object-oriented, open-source programs. They

analyzed data from 40 programs developed in Java, including

tools, libraries and frameworks, of varying sizes and from 11

application domains, in a total of more than 26,000

classes. From the achieved results, they suggested thresholds

for six object-oriented software metrics: COF, LCOM, DIT,

afferent couplings, number of public methods and number of

public fields. The study concluded that values of those metrics,

except DIT, can be modeled by a heavy-tailed distribution.

This property means that, for most metrics, there is a low

number of occurrences of high values and a far higher number

of occurrences of low values. Values of DIT can be modeled

by the Poisson distribution, having mean value 2. Based on the

most commonly values found in practice, They derived general

thresholds for object-oriented software metrics, and thresholds

by application domain, size and type (tool, library and

framework) of software system. As they did not discover

pertinent difference among them, we suppose that the general

thresholds can be applied to OO software in general. The

recognized thresholds were evaluated by means of two

experiments. The outcomes of this evaluation point to that the

proposed thresholds can assist to recognize classes which defy

design principles. Furthermore, the attained results suggest that

the thresholds can efficiently assess a design as good when it

actually is. The proposed thresholds were derived from

common practice.

Goel and Bhatia analyzed, object-oriented metrics have

been measured for three C++ programs under the categories of

inheritance, coupling and cohesion. The metrics have been

analyzed and used to understand the various characteristics of

the object-oriented systems. The first conclusion that can be

drawn from this study is that all the programs show good use

of object-oriented features and result in reusable classes. It

has also been found that out of the three features,

Multilevel Inheritance has more impact on reusability. This

study hence not only helps to get some understanding of the

object-oriented systems but also proves that the metrics are

good at evaluating the object-oriented system.

Goel and Bhatia analyzed, the faults can differ

significantly in their impact on the operation of a software

system. It would be valuable to use OO design metrics to help

to identify the fault-proneness of classes when the impact of

faults is taken into account. Based on a public domain data set

ivy1.1, log4j1.0 and ant1.3 provided by NASA, we employed

the statistical logistic regression method to investigate the

fault-proneness prediction usefulness of OO design metrics

with regard to high and low impact faults. They analyzed six

OO design metrics from Chidamber and Kemerer’s (1994)

metrics suite and one size metric LOC from Halstead Metrics.

Our main results are summarized as follows: The CBO, WMC,

RFC, LCOM and LOC metrics are statistically significant

across fault impact, while DIT and NOC are not significant for

any fault impact. The fault-proneness prediction capabilities of

these metrics differ greatly depending on the fault impact used.

When applied to the classification of classes as fault-prone and

not fault-prone in terms of high/low impact faults, the logistic

regression models based on these metrics achieve a

performance comparable to previous studies.

A clear understanding of the definitions of these

complexity metrics and a promise of their relevance in

improving the outcomes of software development projects let

to a body or research primarily focusing on the validation of

these metrics.

III. METHODOLOGY

The software JFreeChart is downloaded from its home

page www.sourceforge.net/jfreechart. In this research several

versions starting from JFreeChart are considered. The

procedure followed for data collection is as follows:

1) Download the source code of the software component

and reverse engineer it to get the design information. BOUML

(www.bouml.free.fr) is the tool used for the reverse

engineering process. BOUML generates the output in the form

of an XMI (XML Metadata Interchange) file.

2) Input the XMI file to the SDMetrics tool

(www.sdmetrics.com) to collect the metrics. SDMetrics tool

collects the metrics data and produces it in the CSV format. It

collects metrics at class as well as package level.

IV. ANALYSIS OF OO METRICS

This research analyzes metrics at three levels- System,

Package and Class level.

A. System Level Metrics

System level metrics are the metrics which measure the

properties of a system at the highest level of abstraction. In this

category, this study includes metrics from the MOOD metric

set (Abreu et al., 1996). This set has metrics to measure the

basic properties of an object oriented design such as

encapsulation, inheritance, polymorphism, and coupling. It is

believed that these mechanisms, if incorporated in the design of

a software product, help to make it easy to reuse and maintain.

But use of these features in a design depends upon the abilities

of its designer. It is important to correlate improvements in

software quality with the use of these mechanisms. System

level metrics for different versions of JfreeChart software were

collected.

Trends in the metric values are discussed next:

1) Method Hiding Factor (MHF) and Attribute Hiding

Factor (AHF)

MHF and AHF represent average amount of class members

(attributes or methods) hidden from other classes in a system.

If all members of all the classes are hidden, then MHF and

AHF both are 100% for the system. But this could not be

possible practically. A class cannot exist in isolation in a

system. It has to communicate with other classes to support the

functionality of the system. It has to declare some of its

methods as public. Therefore AHF may attain value 100% (and

it is ideal too), but MHF should not. Number of visible

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 92-97

94 | P a g e

methods of a class indicates its functionality. Larger is the

value, more will be the functionality. High values of MHF

indicate very less functionality. On the other hand, if all

members of all the classes are public, then AHF and MHF both

are 0% for the system. This is also an alarming situation. A

large number of public members of classes increase the

probability of errors in a system.

An acceptable range of 8% to 25% is suggested for MHF.

In another study of MOOD metrics on 9 commercial projects,

MHF takes values in this range (Harrison et al., 1998a).

Fig.1: Method Hiding Factor (MHF) Metric Trend

It could be observed from Figure 1, that the method hiding

factor (MHF) metric remains within the prescribed limits for

all the releases of the software component. MHF values in

the lower range may be due to the fact that a proper top

down decomposition process has not been followed for

implementing abstractions in the system. On the other hand

in Figure 2, attribute hiding factor (AHF) was initially low but

it has improved over time. AHF is close to the optimal value.

So MHF and AHF both show positive trends for this software

component. It can be said that the design of the software

component adheres to the concept of information hiding.

Fig.2: Attribute Hiding Factor (AHF) Metric Trend

2) Method Inheritance Factor (MIF) and Attribute

Inheritance factor (AIF)

MIF and AIF measure the extent to which individual

classes of a system inherit properties from their respective base

classes. MIF (AIF) is the ratio of the sum of inherited methods

(attributes) in all classes of a system to the total number of

available methods (attributes) in all the classes. Systems in

which classes inherit a large number of properties have large

values of MIF/AIF.

Fig.3: Attribute Inheritance Factor and Method Inheritance

Factor Metrics Trends

All the releases show sufficient amount of inheritance. In

Figure 3, MIF takes values in the range 80% to 95%, and AIF

varies from 37% to 75%. These high values indicate

satisfactory use of method inheritance. However in recent

versions, there is a significant reduction in values of AIF with a

very sharp decline from version JFreeChart 0.9.20 to

JFreeChart 0.9.21. It may be due to increase in average class

size as well as the number of classes of the software

component over the period of time. As the denominator in case

of AIF (MIF) metric is the sum of attributes (methods) of all

classes in a system, increase in the value of the denominator

may have resulted in decreasing trend for the metric values. It

may be noted that at class level, the metrics related to method

inheritance and attribute inheritance show an upward trend

towards the latest versions. However, on average number of

inherited attributes has been very less in comparison to number

of inherited methods. Probably due to this, decline in values of

AIF is sharper in comparison to MIF.

3) Polymorphism Factor (PF)

Polymorphism means having the ability to take several

forms. For object-oriented systems, polymorphism allows the

implementation of a given operation to be dependent on the

object that contains the operation. An operation can be

implemented in different ways in different classes. Classes

with polymorphic operations are easier to extend and modify.

The polymorphism factor (PF) metric is defined as the ratio of

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 92-97

95 | P a g e

the actual number of different polymorphic situations to the

maximum number of possible distinct polymorphic situations

for all classes in a system. PF can be calculated as follows:

M (Ci) = Number of New Methods

M (Ci) = Number of Overriding Methods

DC(Ci) = Descendants Count

In successive versions of this software, PF takes values

from 4% to 10%. Decreasing values of PF show less use of

dynamic binding. Figure 3 shows that MIF is very high, i.e.

there is considerable use of method inheritance. But decreasing

values of PF in Figure 4 indicate that inherited methods are not

extensively redefined in the subclasses. It is not desirable to

redefine a large number of inherited methods as it indicates that

hierarchy is created out of convenience rather than a natural

one. Moreover the exact behaviour of a program in this regard

can be studied with the help of dynamic metrics.

Fig. 4: Polymorphism Factor (PF) Metric Trend

4) Coupling Metrics

In an object oriented design, coupling metrics measure the

interdependencies of different classes. A design with a large

number of inter class dependencies (coupling) is weak and

fragile. CF metric measures coupling between classes at system

level (Abreu et al., 1996). At package level, Robert Martin

defines coupling in two forms: Afferent Coupling (Ca) and

Efferent Coupling (Ce) (Martin, 2003). Efferent coupling keeps

track of outgoing dependencies to other packages whereas

afferent coupling relates to incoming dependencies from other

packages. He further defines another metric instability in terms

of these two metrics.

Coupling between classes can be inbound (import) or

outbound (export). Coupling Between Classes (CBC) measures

the number of inter dependencies a class has with other classes

in the design. It takes into account all types of associations -

incoming as well as outgoing, and strength (number) of

interdependencies. In this study, different metrics are selected

to measure these different dimensions of coupling. CBCinM

measures incoming dependencies from multiple classes. It

counts the number of classes which are dependent upon this

class. It also considers the individual interdependencies

separately (multiple dependencies between same pair of classes

are counted separately). CBCinU measures incoming

dependencies but counts the multiple interdependencies in any

two classes only once. Similarly CBCoutM and CBCoutU

measure the outgoing dependencies. EC_Par and IC_ParU

measure the export and import coupling with respect to a

class’s usage as a data type in other classes or use of other

classes as a data type in the class.

Another kind of coupling is related to the dependencies a

class has on other classes in the same scope (within a package),

same scope branch (with classes in other related packages), or

not in the same branch (with classes in unrelated packages).

Interclass dependencies within the same branch or in the same

scope branch are easy to manage than interdependencies with

classes not in the same scope branch as the class itself.

NumAssEl_sb, NumAssEl_nsb, and NumAssEl_ssc metrics

measure these types of couplings.

B. Package Level Metrics

In object oriented terms, a package is a collection of

classes. Martin (2003) defined some metrics to evaluate design

of packages. This section analyzes the metric results and

interprets the values to discuss the trends in package design

quality.

1) Relation Cohesion

Figure 5 presents average relation cohesion in packages of

the software component across its different releases. Metric

values have improved over the passage of time. As classes

inside a package should be strongly related, the cohesion

should be high. On the other hand, too high values may

indicate over coupling. A good range for relation cohesion is

1.5 to 4.02. Assemblies where relation cohesion is <1.5 or >4.0

might be problematic. As per this rule of thumb in this

component all releases, except 0.9.21, are problematic.

Fig. 5: Relation Cohesion Metric Trend

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 92-97

96 | P a g e

2) Instability

The instability metric is a normalized metric which

combines efferent coupling with afferent coupling and gives

instability as ratio of efferent coupling to sum of efferent

coupling and afferent coupling. The metric range for this

component varies from 0.7 to 0.8 with a few exceptions

(Figure 6). This indicates that on average a classes inside a

package are dependent upon classes outside the large number

of package. As the component evolves, average instability of

the packages remains high. It indicates that outside changes

will affect the internal design of an average package. Instability

measured alone cannot give some useful hints; it should be

studied along with the abstractness metric discussed next.

Fig. 6: Instability Metric Trend

3) Abstractness

Instability of packages in all versions of this component has

been high throughout. However, at the same time abstraction

level of packages has decreased gradually (see Figure 7). It

indicates that after several extensions/modifications, the

packages have become more concrete as perhaps more number

of concrete classes and less number of abstract classes have

been added to the packages.

Fig. 7: Average Abstraction Level of Packages.

Packages were having sufficient levels of abstraction in the

beginning, which was useful to extend them to support future

requirements. Now the component has become general enough

to support the maximum possible requirements in its domain. It

is supported by the fact that number of feature requests have

also reduced with time.

Good package design is achieved by perfect balance

between abstraction (A) and instability(I). Another metric in

this metric set known as the Distance from the Main Sequence,

measures this balancing act.

4) Distance from the Main Sequence

The normalized metric D measures the relation in

abstraction (A) and instability (I). The metric takes values

nearly zero for a package, if A and I are perfectly balanced. As

shown in Figure 8, metric values have improved considerably

in successive releases of the software component. Specifically

recently after version 1.0.5, it has attained a value nearly zero.

This indicates that on average package design is balanced with

respect to abstraction and instability.

Fig.8: Distance from the Main Sequence Metric Trend

V. CONCLUSION

This work examines several versions of the JFreeChart

software using object oriented metrics at three levels: system,

package, and class. Object oriented metrics facilitate to assess

the usage of basic conceptions of the object oriented paradigm

such as abstraction, polymorphism, inheritance, coupling, and

cohesion whilst designing applications derived from this

theory. These conceptions of the paradigm are empirically

validated to be related to creating reliable, resilient, and easily

maintainable designs. Main aim of this work is to examine as

to what extent the concepts of object orientation are

incorporated in the software design and how the usage of these

concepts perks up or degrades as the design evolves over a

course of time.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 92-97

97 | P a g e

REFERENCES

[1] Demyanova, Yulia, Thomas Pani, Helmut Veith, and Florian

Zuleger. "Empirical Software Metrics for Benchmarking of

Verification Tools." In Computer Aided Verification, pp. 561-

579. Springer International Publishing, 2015.

[2] Padmini, K. V., H. M. N. Dilum Bandara, and Indika Perera.

"Use of software metrics in agile software development

process." Moratuwa Engineering Research Conference

(MERCon), IEEE, 2015.

[3] Ferreira, K. A. M., Bigonha, M. A. S., Bigonha, R. S.,

Mendes, L. F. O., and Almeida, H. C., "Identifying

Thresholds for Object-Oriented Software Metrics", The

Journal of Systems and Software, Vol. 85, pp. 244–257, 2012.

[4] Goel, B. M., and Bhatia, P. K., “Analysis of Reusability of

Object-Oriented System using CK Metrics”, International

Journal of Computer Applications (0975 – 8887), USA, Vol. 60,

No.10, , pp. 32-36, 2012.

[5] Goel, B. M., and Bhatia, P. K., “Analysis of Reusability of

Object-Oriented Systems using Object-Oriented Metrics”,

 ACM SIGSOFT Software Engineering Notes, ACM,

New York, USA, Vol. 38, No. 4, pp. 1-5, 2013.

[6] Sastry, B. R., and Saradhi, M. V. V., “Impact of Software

Metrics on Object Oriented Software Development Life Cycle”,

International Journal of Engineering Science and Technology,

Vol. 2, No. 2, pp. 67-76, 2010.

