SPLIT BLOCK SUBDIVISION DOMINATION IN GRAPHS

M.H. Muddebihal ¹, P.Shekanna², Shabbir Ahmed³

Department of Mathematics, Gulbarga University, Gulbaarga-585106.

¹mhmuddebihal@yahoo.co.in, ²shaikshavali71@gmail.com, ³glbhyb09@rediffmail.com

Abstract: A dominating set $D \subseteq V[SB(G)]$ is a split dominating set in [SB(G)]. If the induced subgraph $\langle V[SB(G)] - D \rangle$ is disconnected in [SB(G)]. The split domination number of [SB(G)] is denoted by $\gamma_{SSb}(G)$, is the minimum cardinality of a split dominating set in [SB(G)]. In this paper, some results on $\gamma_{SSb}(G)$ were obtained in terms of vertices, blocks, and other different parameters of G but not members of [SB(G)]. Further, we develop its relationship with other different domination parameters of G.

Key words: Block graph, Subdivision block graph, split domination number.

[I] INTRODUCTION

All graphs considered here are simple, finite, nontrivial, undirected and connected. As usual p, q and n denote the number of vertices, edges and blocks of a graph G respectively. In this paper, for any undefined term or notation can be found in F. Harary [3] and G .Chartrand and PingZhang [2]. The study of domination in graphs was begin by O.Ore [5] and C.Berge [1].

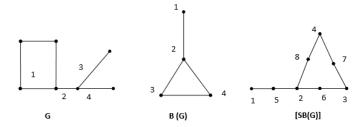
As usual, The minimum degree and maximum degree of a graph G are denoted by $\delta(G)$ and $\Delta(G)$ respectively. A vertex cover of a graph G is a set of vertices that covers all the edges of G. The vertex covering number $\alpha_O(G)$ is a minimum cardinality of a vertex cover in G. The vertex independence number $\beta_O(G)$ is the maximum cardinality of an independent set of vertices. A edge cover of G is a set of edges that covers all the vertices. The edge covering number $\alpha_1(G)$ of G is minimum cardinality of a edge cover. The edge independence number $\beta_1(G)$ of a graph G is the minimum cardinality of an independent set of edges.

A set of vertices $D \subseteq V(G)$ is a dominating set. If every vertex in V - D is adjacent to some vertex in D. The Domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set in G.

A dominating set D of a graph G is a split dominating set if the induced subgraph (V-D) is disconnected. The split domination number $\gamma_s(G)$ of a graph G is the minimum cardinality of a split dominating set .This concept was introduced by Kulli[4]. A dominating set D of G is a cototal dominating set if the induced subgraph (V-D) has no

isolated vertices. The cototal domination number $\gamma_{cot}(G)$ of G is the minimum cardinality of a cototal dominating set. See [4]

The following figure illustrate the formation of [SB(G)] of a graph G



The domination of split subdivision block graph is denoted by $\gamma_{ssb}(G)$. In this paper, some results on $\gamma_{ssb}(G)$ where obtained in terms of vertices, blocks and other parameters of G.

We need the following Theorems for our further results:

[II] MAIN RESULTS

Theorem A [4]: A split dominating set D of G is minimal for each vertex $v \in D$, one of the following condition holds.

- i) There exists a vertex $u \in V D$, such that $N(u) \cap D = \{v\}$.
- ii) v is an isolated vertex in $\langle D \rangle$.
- iii) $((V D) \cup \{v\})$ is connected.

Theorem B [4]: For any graph , $\gamma_s(G) \leq \frac{p \cdot \Delta(G)}{1 + \Delta(G)}$.

Now we consider the upper bound on $\gamma_{ssb}(G)$ in terms of blocks in G.

Theorem 2.1: For any graph G with n - blocks and $n \ge 2$, then $\gamma_{ssb}(G) \le n - 1$.

Proof: For any graph G with n=1 block, a split domination does not exists. Hence we required $n \ge 2$ blocks. Let $S = \{B_1, B_2, B_3, \dots, B_n\}$ be the number of blocks of G and $M = \{b_1, b_2, b_3, \dots, b_n\}$ be the vertices in B(G) with corresponding to the blocks of S. Also $V = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices in [SB(G)]. Let $V_1 = \{v_1, v_2, v_3, \dots, v_i\}$,

 $1 \leq i \leq n, V_1 \subset V \text{ be a set of cut vertices. Again consider a subset} \qquad V_1^1 \text{ of } V \qquad \text{such that} \\ \forall v_i \in N(V) \cap N(V_1^1) \text{ and } V_1 = V - V_1^1. \qquad \text{Let } \\ V_2 = \{v_1, v_2, v_3, \dots, v_s\} \ , 1 \leq s \leq n \ , \forall v_s \in V \text{ which are not cut vertices such that } \\ N(V_1) \cap N(V_2) = \emptyset \text{ , then } \{V_1 \cup V_2\} \text{ is a dominating set } \\ .\text{Clearly } V[SB(G) - \{V_1 \cup V_2\} = H \text{ is disconnected graph.} \\ \text{Then } (V_1 \cup V_2) \text{ is a } \gamma_{ssb} - set \text{ of } G. \text{ Hence } \\ |V_1 \cup V_2| = \gamma_{ssb}(G) \text{ which gives } \gamma_{ssb}(G) \leq n-1.$

In the following Theorem, we obtain an upper bound for $\gamma_{ssb}(G)$ in terms of vertices added to B(G).

Theorem 2.2: For any connected (p, q) graph with $n \ge 2$ blocks, then $\gamma_{ssb}(G) \le R$ where R is the number of vertices added to B(G).

Proof: For any nontrivial connected graph G. If the graph G has n=1 block. Then by the definition, split domination set does not exists. Hence $n \ge 2$ blocks. Let $S = \{B_1, B_2, B_3, \dots, B_n\}$ be the blocks of G and $M = \{b_1, b_2, b_3, \dots, b_n\}$ be the vertices in B(G) which corresponds to the blocks of G. Now we consider the following cases.

Case1: Suppose each block of B(G) is an edge. Then R = q = E[B(G)]. Let $V = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices of [SB(G)]. Now consider $V_1 = \{v_1, v_2, v_3, \dots, v_i\}$, $1 \le i \le n$ is a set of cut vertices in [SB(G)].

Let $V_2 \subseteq V_1$, $\forall v_j \in V_2$ are adjacent to end vertices of [SB(G)]. Again there exists a subset V_3 of V_1 with the property $V[SB(G)] - \{V_2 \cup V_3\} = H$ where $\forall v_n \in H$ is adjacent to at least one vertex of $(V_2 \cup V_3)$ and H is a disconnected graph . Hence $V_2 \cup V_3$ is a γ_{ssb} set of G. By Theorem 1,

 $|V_2 \cup V_3| \le R$.

www.ijtra.com Volume 2, Issue 5 (Sep-Oct 2014), PP. 82-86 Case2: Suppose each block of B(G) is a complete graph with $p \ge 3$ vertices. Again we consider the sub cases of case 2.

Subcase2.1: Assume $B(G) = K_p$, $p \ge 3$. Then V[SB(G)] = V[B(G)] + q[B(G)] and V[SB(G)] - V[B(G)] = q[B(G)] where $\forall v_i \in q[B(G)]$ is an isolates. Hence $|q[B(G)]| \ge |V[B(G)]|$ which gives $\gamma_{ssb}(G) \le R$.

Sub case 2.2: Assume every block of B(G) is $K_p, p \geq 3$. Let $B(G) = \{K_{p_1}, K_{p_2}, K_{p_3}, \dots K_{p_m}\}$ then $V\{S[B_1(G) \cup B_2(G) \cup B_3(G), \dots \cup B_m(G)]\} = V[B_1, B_2, B_3, \dots B_m] + q_1[B(G)] \cup q_2[B(G)] \cup q_3[B(G)]$ and $V\{S[B_1(G) \cup B_2(G) \cup B_3(G), \dots \cup B_m(G)]\} - V[B_1, B_2, B_3, \dots B_m] = q_1[B(G)] \cup q_2[B(G)] \cup q_3[B(G)] \dots Q_m[B(G)]$ where $v_i \in q_1[B(G)] \cup q_2[B(G)] \cup q_3[B(G)] \dots Q_m[B(G)]$ is an isolate. Hence $|q_1[B(G)] \cup q_2[B(G)] \cup q_3[B(G)] \dots Q_m[B(G)] | \geq |V[B_1, B_2, B_3, \dots B_m]|$ which gives $\gamma_{ssb}(G) \leq R$.

We establish an upper bound involving the Maximum degree $\Delta(G)$ and the vertices of G for split block sub division domination in graphs.

Theorem 2.3: For any graph G with $n \ge 2$ blocks, then $\gamma_{ssb}(G) \le \left\lfloor \frac{p \cdot \Delta(G)}{1 + \Delta(G)} \right\rfloor$.

Proof: For split domination, We consider the graphs with $n \ge 2$ blocks. property Let $S = \{B_1, B_2, B_3, \dots B_n\}$ be the blocks of Gand $M = \{b_1, b_2, b_3, \dots b_n\}$ be the vertices in B(G)corresponding to the blocks of $V = \{v_1, v_2, v_3, \dots v_n\}$ be the vertices in [SB(G)]. Let D be a γ_s - set of [SB(G)]. By Theorem A, each vertex $v \in D$, there exist a vertex $u \in V[SB(G)] - D$ is a split [SB(G)]. Thus dominating set in $\gamma(G) \leq |V[SB(G)] - D|, \gamma(G) \leq P - \gamma_{ssb}(G)$. Since by Theorem B, $\gamma_s(G) \leq \frac{p.\Delta(G)}{1+\Lambda(G)}$ gives $\gamma_{ssb}(G) \leq \left| \frac{p\Delta(G)}{1+\Delta(G)} \right|$

The following lower bound relationship is between split domination in [SB(G)] and vertex covering number in B(G).

Theorem 2.4: For any graph G with $n \geq 2$ blocks ,then $\gamma_{ssb}(G) \geq \alpha_{O}[B(G)]$, where α_{O} is a vertex covering number of B(G).

Proof: We consider only those graphs which are not n = 1. Let $S = \{B_1, B_2, B_3, \dots, B_n\}$ be the blocks of Gcorrespondes to $M = \{b_1, b_2, b_3, \dots \dots b_n\}$ be the vertices in B(G). Let $V = \{v_1, v_2, v_3, \dots, v_n\}$ be the vertices [SB(G)] such that $M \subset V$. Again $D = \{v_1, v_2, v_3, \dots, v_i\}, 1 \le i \le n, D \subset V \text{ such that } i \le n \in V$ $N(v_i) \cap N(v_j) = v_k$ $v_i, v_j, \in D$ $v_k \in V[SB(G)] - D$ and $N(v_i) \cap N(v_i) = \emptyset$, $\forall v_i, v_i, \in D$. Hence $\langle V[SB(G)] - D \rangle$ is disconnected, which gives $|V[SB(G) - D| = \gamma_{ssb}(G)$. $M_1 = \{b_1, b_2, b_3, \dots b_i\}, 1 \le i \le n \text{ and } M_1 \subset M$ and each edge in B(G) is adjacent to at least one vertex in M_1 . Clearly $|M_1| = \alpha_0[B(G)]$. Hence $|V[SB(G)] - D| \ge |M_1|$ which gives $\gamma_{ssb}(G) \ge \alpha_0[B(G)]$.

The following result gives a upper bound for $\gamma_{ssb}(G)$ in terms of domination and end blocks in G.

Theorem 2.5: For any connected graph G with $n \ge 2$ blocks and N - end blocks, then

$$\gamma_{ssb}(G) \leq \gamma(G) + N$$

Proof: Suppose graph G is a block .Then by definition, the split domination does not exists. Now assume G is a graph with at least two blocks. Let $S = \{B_1, B_2, B_3, \dots, B_n\}$ be the set of blocks in G and $M = \{b_1, b_2, b_3, \dots b_n\}$ be the vertices in B(G) which corresponds to the blocks of G. Now $V = \{v_1, v_2, v_3, \dots, v_n\}$ be the vertices in [SB(G)]. Suppose D is a γ_s - set in [SB(G)] of G, whose vertex set is $V = \{v_1, v_2, v_3, \dots, v_i\}$. Note that at least one $v_i \in S$. More over, any component of V - S is of size at least two. Thus D is minimal which gives $|D| = \gamma_{ssb}(G)$. Again $S_1 = \{u_1, u_2, u_3, \dots u_n\}$ vertices in $D_1 = \{u_1, u_2, u_3, \dots u_i\}, 1 \le i \le n, D_1 \subset S_1$. Every vertex of $S_1 - D_1$ is adjacent to at least one vertex of D_1 . Suppose there exists a vertex $v \in D_1$ such that every vertex of $D_1 - V_1$ is not adjacent to at least one vertex $u \in [S_1 - \{D_1 - v\}]$. Thus $|S_1 - D_1| = \gamma(G)$. Hence $|D| \le |S_1 - D_1| + N$ which gives $\gamma_{ssb}(G) \le \gamma(G) + N$.

www.ijtra.com Volume 2, Issue 5 (Sep-Oct 2014), PP. 82-86 A relationship between the split domination in [SB(G)] and independence number of a graph G is established in the following theorem.

Theorem2.6: For any connected graph G with $n \ge 2$ blocks then $\gamma_{ssb}(G) \ge \beta_O(G) - 1$, where $\beta_O(G)$ is the independence number of G.

Proof: By the definition of split domination, $n \neq 1$. Let $S = \{B_1, B_2, B_3, \dots, B_n\}$ be the blocks of G which corresponds to the vertices of the set $M = \{b_1, b_2, b_3, \dots, b_n\}$ in B(G). Let $V = \{v_1, v_2, v_3, \dots, v_n\}$ be the vertices in [SB(G)] such that $M \subseteq V$. Let $H = \{v_1, v_2, v_3, \dots, v_s\}$ be the set of vertices in G. W have the following cases.

B(G)Suppose Case1: is Let $V_1^1 = \{v_1, v_2, v_3, \dots, v_s\}$ are cut vertices [SB(G)]. Again $V_1^{11} = \{v_1, v_2, v_3, \dots, v_t\}, 1 \le t \le s$ and $V_1^{11} \subset V_1^1$, were $\forall v_t \in V_1^{11}$. Then we consider V_2^1, V_3^1, V_4^1 where $V_1^{11} = \{v_1, v_2, v_3, \dots, v_t\} = V_2^1 \cup V_3^1 \cup V_4^1$ with the property that $N(v_i) \cap N(v_i) = \emptyset$, $\forall v_i \in V_2^1$ and $\forall v_j \in V_3^1$ and V_4^1 is a set of all end vertices in[SB(G)]. Again $\langle V[SB(G)] \rangle = J$ where every $v \in J$ is an isolates. Thus $|V_1^{11}| = \gamma_{ssb}(G)$.

Case 2: Suppose B(G) is not a tree. Again we consider sub cases of case 2

Subcases 2.1: Assume B(G) is a block. Then in [SB(G)], $V[SB(G)] = V[B(G)] + \{K\}$, where $\forall k$,

degk = 2. Thus $|K| = P_0$ the number of isolates in V[SB(G)] - V[B(G)]. Hence $|V[B(G)]| = \gamma_{ssb}(G)$. One can see that for the $\beta_0 - set$ as in case 1, We have $|V[B(G)]| \ge \beta_0 - 1$ which gives $\gamma_{ssb}(G) \ge \beta_0(G) - 1$.

Sub case 2.2: Assume B(G) has at least two blocks. Then as in subcase 2.1, we have $\gamma_{ssb}(G) \ge \beta_0(G) - 1$.

The next result gives a lower bound on $\gamma_{ssb}(G)$ in terms of the diameter of G.

Theorem 2.7: For any graph G with $n \ge 2$ blocks ,then $\gamma_{ssb}(G) \ge diameter(G) - 2$.

Proof: Suppose $S = \{B_1, B_2, B_3, \dots, B_n\}$ be the blocks of G, Then $M = \{b_1, b_2, b_3, \dots, b_n\}$ be the corresponding block vertices in B(G). Suppose $A = \{e_1, e_2, e_3, \dots, e_k\}$ be the set of edges which constitutes the diameteral path in G. Let $S_1 = \{B_i\}$ where $1 \le i \le n$, $S_1 \subset S$. Suppose $\forall B_i \in S_1$ are non end blocks in G, which gives cut vertices in B(G) and [SB(G)]. Suppose $V = \{v_1, v_2, v_3, \dots, v_n\}$ be the vertices in [SB(G)]. Again $V_1 = \{v_1, v_2, v_3, \dots, v_i\}$ where $1 \le i \le n$ such that $V_1 \subset V$ then $\forall v_i \in V_1$ are cut vertices in [SB(G)]. Since they are non end blocks in [SB(G)]. Then V_1 is a $\gamma_s - set$ of [SB(G)]. Clearly $|V_1| = \gamma_{ssb}(G)$.

Suppose G is cyclic then there exists at least one block B which contains a block diametrical path of length at least two. In B(G) the block $B \in V[B(G)]$ as a singleton and if at most two elements of $\{A\} \notin$ diameter of G then $|A|-2 \leq |V_1|$ gives $\gamma_{ssb}(G) \geq diameter(G)-2$. Suppose G is acyclic then each edge of G is a block of G. Now $\forall B_i \in S$, $\exists e_i$, $e_j \notin \{A\}$, where $1 \leq \{i,j\} \leq k$ gives $diameter(G)-2 \leq |V_1|$. Clearly we have $\gamma_{ssb}(G) \geq diameter(G)-2$.

The following result is a relationship between $\gamma_{ssb}(G)$, domination and vertices of G.

Theorem 2.8: For any graph G with $n \ge 2$ blocks then $\gamma_{ssb}(G) + \gamma(G) \le P + 1$.

Proof: Suppose the graph G has one block, then split domination does not exists. Hence $n \ge 2$ blocks.

Suppose $S = \{B_1, B_2, B_3, \dots, B_n\}$ be the blocks of $M = \{b_1, b_2, b_3, \dots \dots b_n\}$ G.Then the in B(G). block vertices corresponding Let $H = \{v_1, v_2, v_3, \dots, v_n\}$ be the set of vertices in G. Also $J = \{v_1, v_2, v_3, \dots, v_i\}$ where $1 \le i \le n$ such that $J \subset H$ and $\forall v_i \in H - J$ is adjacent to at least one vertex of J. Hence $|J| = \gamma(G)$. Let $V = \{v_1, v_2, v_3, \dots, v_s\}$ be the set of vertices in [SB(G)]. Now $S_1 = \{B_i\}$ where $1 \le i \le n$, $S_1 \subset S$ and $\forall B_i \in S_1$ are non end blocks in G. Then we have $V_1 \subseteq V$ which corresponds to the elements of $S[S_1]$ such that V_1 forms a minimal dominating set of [SB(G)]. Since each element of V_1 is a cut vertex, then

www.ijtra.com Volume 2, Issue 5 (Sep-Oct 2014), PP. 82-86 $|V_1| = \gamma_{ssb}(G)$. Further $V_1 \cup J \leq P+1$ which gives $\gamma_{ssb}(G) + \gamma(G) \leq P+1$.

Next, the following upper bound for split domination in [SB(G)] is interms of edge covering number of G.

Theorem2.9: For any connected (p,q) graph with $n \ge 2$ blocks, then $\gamma_{ssb}(G) \le \alpha_1(G) + 1$ where $\alpha_1(G)$ is the edge covering number.

Proof: For any non trivial connected graph G with n = 1 block, then by definition of split domination, the split domination set does not exists. Hence $n \ge 2$ blocks.

Let $S = \{B_1, B_2, B_3, \dots, B_n\}$ be the blocks of G which correspondes to the set $M = \{b_1, b_2, b_3, \dots, b_n\}$ be the vertices in B(G). Let $V = \{v_1, v_2, v_3, \dots, v_n\}$ be the vertices in [SB(G)] such that $M \subseteq V$. We have the following cases.

Case 1: Suppose each block is an edge in G. Then $E(G) = |E_1(G) \cup E_2(G)|$ where $E_1(G)$ is the set of end edges, If every cut vertex of G is adjacent with an end vertex. Then $\exists E_1(G) and E_2(G)$. If $E_2(G) = \emptyset$. Then $|E_1(G)| = \alpha_1(G)$. Otherwise $|E_1(G) \cup E_2(G)| = \alpha_1(G)$.

Let $D_1=\{v_s\}, 1\leq s\leq n \ and \ D_1\subset V$, then there exist at least one cut vertices in [SB(G)]. Let $D_2=\{v_t\}$ $1\leq t\leq n$, $D_2\subset V$ which are non cut vertices in [SB(G)]. Again $D_2^1=\{v_l\}, 1\leq l\leq t$ and $D_2^1\subset D_2$. The $N(D_2^1)\cap N(v_s)=\emptyset$ then $(D_2^1\cup D_1)$ is a split dominating set. Hence $(V[SB(G)]-(D_2^1\cup D_1))=\gamma_{ssb}(G)$. Since $(V[SB(G)]-(D_2^1\cup D_1))$ has more than one component. Hence $|V[SB(G)]-(D_2^1\cup D_1)|\leq \alpha_1(G)+1$ which gives $\gamma_{ssb}(G)\leq \alpha_1(G)+1$.

Case2: Suppose G has at least one block which is not an edge. Let $D_1 = \{v_1, v_2, v_3, \dots, v_i\}$, $1 \le i \le n$ and $D_1 \subset V$ be the set of cut vertices such that $N(v_i) \ne \emptyset$. Again $D_2 = \{v_1, v_2, v_3, \dots, v_l\}$, $1 \le l \le i$ be the set of cut vertices in [SB(G)] such that $N(v_i) \cap N(v_l) = \emptyset$, $N(v_i) \cap N(v_l) = v_k$, where v_i , v_l , $\in D$ and $v_k \in V[SB(G)] - D$. Hence $\langle V[SB(G)] - D \rangle$ is disconnected, which gives $|V[SB(G)] - D| = \gamma_{ssb}(G)$. As in case 1, $\alpha_1(G)$ will increase. Hence $|V[SB(G)] - D| \le \alpha_1(G) + 1$ which gives $\alpha_1(G) + 1 \ge \gamma_{ssb}(G)$.

The following lower bound for split domination in [SB(G)] is interms of edge independence number in B(G).

Theorem 2.10: For any graph G with $n \ge 2$ blocks then $\gamma_{ssb}(G) \ge \beta_1[B(G)]$.

Proof: By the definition of Split domination, we need $n \ge 2$ blocks. We have the following cases.

Case 1: Suppose each block in B(G) is an edge. Let $E = \{e_1, e_2, e_3, \dots, e_n\}$ be the set of edges in B(G). Also $E_1 = \{e_s\}, 1 \le s \le n$ be a set of alternative edges in B(G). Then $|E_1| = \beta_1 [B(G)]$.

Consider $V = \{v_1, v_2, v_3, \dots v_n\}$ be the vertices in [SB(G)], again $V_1 = \{v_1, v_2, v_3, \dots v_i\}$ be the cut vertices which are adjacent to at least one vertex of E_1 and $V_2 = \{v_s\}$ are the end vertices in [SB(G)]. Further $(V[SB(G)] - (V_1 \cup V_2))$ is disconnected. Then $|V_1 \cup V_2|$ is a γ_{ssb} – set.

Hence $|V_1 \cup V_2| \ge |E_1|$ which gives $\gamma_{ssb}(G) \ge \beta_1[B(G)]$.

Case2: Suppose there exists at least one block which is not an edge. Let $E = \{e_1, e_2, e_3, \dots, e_n\}$ be the set of edges in B(G). Again $E_1 = \{e_s\}, 1 \le s \le n$ is the set of alternative edges in B(G) which gives $|E_1| = \beta_1 [B(G)]$.

Suppose $V = \{v_1, v_2, v_3, \dots v_n\}$ be the vertices of [SB(G)]. Then $V = V_1 \cup V_2$ where V_1 is a set of cut vertices and V_2 is a set of non cut vertices. Now we consider $V_1^1 \subset V_1$ and $V_2^1 \subset V_2$ such that $(V[SB(G)] - (V_1^1 \cup V_2^1))$ has more than one component. Hence $\{V_1^1 \cup V_2^1\}$ is a $\gamma_{ssb} - set$ and $|V_1^1 \cup V_2^1| \ge \beta_1[B(G)]$ which gives $\gamma_{ssb}(G) \ge \beta_1[B(G)]$.

In the following theorem, we expressed the lower bound for $\gamma_{ssb}(G)$ in terms of cut vertices of B(G).

Theorem 2.11: For any connected graph G with $n \ge 2$ blocks then $\gamma_{ssb}(G) \ge C[B(G)]$ where C is the cut vertices in B(G).

Proof: Suppose graph G is a block. Then by the definition, of split domination, $n \ge 2$. consider the following cases.

Case 1: Suppose each block of B(G) is an edge. Then we consider $S = \{v_1, v_2, v_3, \dots, v_m\}$ be the cut vertices in B(G). Now $V = \{v_1, v_2, v_3, \dots, v_n\}$ be the vertices in

www.ijtra.com Volume 2, Issue 5 (Sep-Oct 2014), PP. 82-86 [SB(G)] and $V_1 = \{v_i\}$ $1 \le i \le n$ are cut vertices in [SB(G)]. $Again V_2 \subset V_1$ is adjacent to at least one vertex in S. Then $V[SB(G)] - V_2$ gives disconnected graph. Thus $|V_2| = \gamma_{ssb}(G)$. $Hence|V_2| \ge C[B(G)]$ gives $\gamma_{ssb}(G) \ge C[B(G)]$.

Case 2: Suppose each block in B(G) is not an edge. Let $S_1 = \{v_1, v_2, v_3, \dots, v_s\}$ be the cut vertices in [SB(G)]. Then $S_1 \cong S$. Again $S_2 = \{v_1, v_2, v_3, \dots, v_l\}$ are the non cut vertices in [SB(G)]. Further we consider $S_2^1 \subset S_2$ such that $V[SB(G)] - \{S_2^1\} \cup \{S\} = H$ where $\langle H \rangle$ is disconnected. Clearly $|S_2^1 \cup S_1| \ge |S|$ which gives $\gamma_{ssb}(G) \ge C[B(G)]$.

Finally, the following result gives an lower bound on $\gamma_{ssb}(G)$ in terms of $\gamma_{cot}(G)$.

Theorem 2.12: For any nontrivial tree with $n \ge 2$ blocks, $\gamma_{ssb}(G) \ge \gamma_{cot}(G) - 1$.

Proof: We consider only those graphs which are not n=1. Let $H=\{v_1,v_2,v_3,\ldots,v_p\}$, $H_1=\{v_1,v_2,v_3,\ldots,v_i\}$, $1\leq i\leq p$ be a subset of V(G)=H which are end vertices in G. Let $J=\{v_1,v_2,v_3,\ldots,v_j\}\subseteq V(G)$ with $1\leq j\leq p$ such that $\forall v_j\in J$, $N(v_i)\cap N(v_j)=\emptyset$ and $(V(G)-(H_1\cup J))$ has no isolates, then $|H_1\cup J|=\gamma_{cot}(G)$. Let $V=\{v_1,v_2,v_3,\ldots,v_n\}$ be the vertices in [SB(G)]. consider $D=\{v_1,v_2,v_3,\ldots,v_t\}=V_1\cup V_2\cup V_3$ be the set of all vertices of [SB(G)]. Where $\forall v_s\in V_1$ and $v_t\in V_2$ with the property $(v_s)\cap N(v_t)=\emptyset$, $\forall v_i\in V_3$ is a set of all end vertices in [SB(G)]. The (D) is an isolates. |D| gives minimum split domination in [SB(G)].

Thus $|D| = \gamma_{ssb}(G)$. Clearly $|H_1 \cup J| - 1 \le |D|$ which gives $\gamma_{ssb}(G) \ge \gamma_{cot}(G) - 1$.

REFERENCES

- [I] C Berge, Theory of graphs and its applications, Methuen, London, (1962).
- [II] G. Chartrand and Ping Zhang, "Introduction to graph Theory", Newyork (2006).
- [III] F.Harary, Graph Theory, Adison Wesley, Reading Mass (1972).
- [IV] V.R.Kulli, Theory of domination in Graphs, Vishwa international Publications, Gulbarga, India. (2010).
- [V] O.Ore, Theory of graphs, Amer. Math. soc., Colloq. Publ., 38 Providence, (1962).