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Abstract— We revisit the Kaluza-Klein theory and solve the 

field equations of the Kaluza-Klein theory with constant coupling 

field between the electromagnetic and gravitational field in terms 

of power expansions in the   coordinate for the spherical 

symmetric case entirely, where   is the distance between the 

gravitational center and the test particle. In the Einstein-Maxwell 

case where the electromagnetic field and the gravitational fields 

are coupled linearly, we discuss the exact behavior of the roots of 

the pseudo potential for the motion of the position   as a function 

of the planar  -angle for an orbiting particle. We investigate the 

analytic continuation of a trajectory of a test particle entering the 

gravitational center of a central body, which has performed a 

temporal jump when exiting the gravitational center again. This 

temporal displacement, if repeated, constitutes a stochastic 

process that has an expectation value of the reduced Planck 

constant divided by two times the rest mass of the electron, since 

the temporal displacement process of the electron goes along with 

an annihilation and recreation process of the electron that enters 

and exits the gravitational center. Thus, our finding corresponds 

to the existence of a Heisenberg uncertainty relation with respect 

to temporal and energetic fluctuations of the electron in the 

electron-proton system, which translates to an Heisenberg 

uncertainty relation with respect to spatial variations and 

variations in the momentum of the electron in the electron-

proton system. The validity of the latter uncertainty relation is 

equivalent with the existence of a Schroedinger equation 

governing the statistic behavior of the electron in the electron-

proton system. In this way we derive the ground principles of 

classical quantum mechanics from the unified gravitational 

theory for gravitation and electromagnetism straightforwardly. 

Keywords— Privacy, Preservation, community, detection, 

Anonymization, social network. 

I. INTRODUCTION

In 1921 Kaluza [1921] presented a generalization of 

Einstein’s original general relativistic theory, where the four-

dimensional mathematical concept of differential geometry for 

the description of a four-dimensional space-time underlying 

Einstein’s theory was generalized to five dimensions to 

describe a five-dimensional space-time. In this description the 

fifth dimension of the five-dimensional space-time was filled 

with the four components of the vector potential of the 

electromagnetic field plus a scalar coupling field between the 

electromagnetic field and the gravitational fields. This 

implementation of the electromagnetic field in the five-

dimensional metric was done in a way that the electromagnetic 

field transformed as a gauche-field under a coordinate 

transformation of the five-dimensional space-time. The field 

equations for the four-dimensional metric, the vector potential 

and the scalar field are then obtained by calculating the Euler-

Lagrange derivatives of the five-dimensional curvature of the 

five-dimensional metric and assuming that all fields are only 

depending on the coordinates of the four-dimensional space-

time. This procedure secures that the Lagrange-density of the 

entire physical system, in this case the curvature of the five-

dimensional space-time, is minimal, thus indicating that 

electromagnetic fields generate gravitational fields or that 

gravitational field induce electromagnetic fields, whereby 

relaxations of that kind take place under the boundary 

condition that time-dilation effects and Lorentz-contraction 

effects compensate each other to the largest possible extend. 

This treatment of the transformation of electromagnetic and 

gravitational field into each other is analogous to the treatment 

of classical mechanical systems in which kinetic energy 

transforms to potential energy and vice versa. In fact, the 

Kaluza [1921] approach is the generalization of that classical 

principle. 

The Lagrange-density of the five-dimensional space can be 

extended by another action term, the so-called Gauss-Bonnet 

action, another interaction term between the electromagnetic 

and gravitational fields that leads to field equations of second 

order, and which has been proven to be unique Lovelock 

[1971]. The field equations without consideration of the 

mathematically possible Gauss-Bonnet term are called the field 

equations of the Einstein-Maxwell theory, whereas the field 

equations with consideration of the Gauss-Bonnet term are 

called the field equations of the full Kaluza-Klein theory (Klein 

[1926] gave the whole theory a quantum-mechanical 

interpretation in 1926). In the full Kaluza-Klein theory the 

gravitational and electromagnetic fields are coupled non-

linearly, whereas in the Einstein-Maxwell theory a linear 

relationship between gravitational and electromagnetic terms 

holds. If the scalar field is considered to be a spatially and 

temporally varying field, there is another field equation for the 

scalar field in the non-linearly coupled theory. The full set of 

the field equations has been derived as late as 2015 [see, e.g., 

Williams, 2015]. In the case that the coupling field is a near 

constant, the field equations are much simpler and were 
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derived first by Mueller-Hoissen [1988]. Mueller-Hoissen & 

Sippel [1988] discussed properties of the solutions of the field 

equations in the spherical symmetric case. 

Schmidt [1990] expanded the investigation of Mueller-

Hoissen & Sippel [1988] and discussed and classified the 

numerical solutions of the geodetic equations of the Kaluza-

Klein theory with constant coupling field in the spherical 

symmetric case. Schmidt [1990] also found exact solutions of 

the field equations of the Kaluza-Klein theory with constant 

coupling field in the cylindrical symmetric case for a charged 

wall and a charged staff. 

Schmidt [1990] also revisited the Einstein-Maxwell theory 

and integrated the geodetic equations of that theory for a 

moving test particle without rotational momentum. Schmidt 

[1990] integrated the geodetic equations of the Einstein-

Maxwell theory for a moving test particle with rotational 

momentum up to the extend that analytic formula for the 

trajectories as functions of the rotation angle in the plane of 

motion were obtained, too. 

Although full solutions of the geodetic equations of the 

Einstein-Maxwell theory even for the more general cylindrical 

symmetric case exist [see, e.g., Carter, 1968; Misner, 1973, 

equations 33.37a-d], these solutions are complicated by the fact 

that they contain severe components of a latitudinal motion of 

the test particle, which can only be expressed with nested 

elliptic integrals, thus making these solutions difficult to assess. 

However, in the approach of Schmidt [1990], in the integration 

process, a continuous rotation of the coordinate system is 

introduced, which is a free parameter for any solution of 

general relativistic geodetic equations that shows that the 

solution in the spherically symmetric case is actually a 

movement of the particle around the gravitational center in a 

plane, the ecliptic, and that these solutions can be expressed in 

terms of simple elliptic functions. So the solutions of Schmidt 

[1990] have the quality of having obtained generalized Kepler 

ellipses for the Kepler problem within the Einstein-Maxwell 

theory. 

In this work we revisit earlier work regarding the Kaluza-

Klein theory, and expand the work of Mueller-Hoissen & 

Sippel [1988] in order to obtain the full solutions of the field 

equations of the Kaluza-Klein theory with constant coupling 

field in the spherical symmetric case, which can be expressed 

in terms of power series in the variable  , where   is the distance 

between the gravitational center and the orbiting particle. We 

then revisit the integration of the geodetic equations of the 

Kaluza-Klein theory with constant coupling field given by 

Schmidt [1990] and comment on every integration step. The 

resulting pseudo potential for the  -motion in the ecliptic for a 

position is then discussed for the Einstein-Maxwell case 

regarding its roots, using the method of the Italian 

mathematician Ferrari for the determination of the four roots of 

a polynomial of degree four. 

We then extend the investigation of the exact solution of 

the geodetic equations for a test particle with zero rotational 

moment in the Einstein-Maxwell case, which was already 

obtained by Schmidt [1990], by tracing the analytic 

continuation of this solution through the gravitational 

singularity of the gravitational center. For this geodetic 

equation we also provide a heuristic derivation that illustrates 

the acting of photons and gravitons between the bodies and 

themselves, which leads to this interaction. We find that the 

test particle starts on a time travel when traversing the 

gravitational center, yet eventually falls back to this 

gravitational center, thus traversing the gravitational center 

again. The reemerging particle thus has performed a temporal 

jump with respect to the entering particle. We can calculate this 

temporal jump exactly. 

If we apply the concept of a temporal jump of a particle 

plunging into a gravitational center to a system where electrons 

repeatedly plunge in the gravitational center of a neighboring 

proton, we can work out the statistics of this process 

comprehended as a stochastic process, which leads to a normal 

distribution of the probability of finding a particle displaced by 

a specific time. For this normal distribution we can calculate 

the expectancy value for the total time displacement. This 

expectancy value is equal to the variance of the time variations 

of the particles induced by the stochastic process. This 

stochastic process is linked with an electron annihilation-

recreation process, the electron is absorbed by the gravitational 

center of the proton and reemerges, which corresponds to an 

energy fluctuation with the value of two times the rest energy 

of the electron. The product of the time and this energy 

fluctuation is a constant for which we can show that it is 

identical with the Planck constant divided by two times pi. In 

this way we have derived Heisenberg’s uncertainty principle 

for temporal and energetic fluctuations of particles, which 

translates to an equivalent uncertainty principle for spatial 

fluctuations and fluctuations of the momentum of the particles. 

The validity of a Heisenberg uncertainty relation with respect 

to position and momentum is equivalent with the existence of a 

Schroedinger equation governing the statistical behavior of an 

electron in an electron-proton system. 

II. THE THEORY OF KALUZA & KLEIN

A good overview article on the topic can be found in 

Goenner [1984]. In summary, the basics are as follows: In a 

higher-dimensional space 



















  ,,=R (1) 

is the Riemann tensor that prescribes how a vector changes 

in a curved space, when the vector is transformed with an 

infinitesimal coordinate transformation. Here, the   functions 

are the so-called Christoffel symbols, the indices’s range up to 

the dimension of the space time, double indices’s indicate a 

summation, and the comma stands for a derivation. The 

Christoffel symbols are defined as 

 ,
2

1
= ,,, 


 gggg  (2) 

where g is the metric (represented by a matrix), and 

g is the inverse of g . Via contraction one obtains 

the Ricci tensor 

 RR = (3) 

 and the curvature 

.= 
 RgR (4) 

 On the other hand, one has the Maxwell tensor 
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 ,,= AAF  (5) 

 for the electromagnetic field, which is the (four)-dimensional 

rotation of the vector potential A of the electrodynamic 

field. With this tensor one can define the Maxwell scalar 

,
4

1
= 

FFF  (6) 

 where upper indices’s are obtained via contraction with the 

inverse metric. The Lagrange density of the minimally 

coupled gravitational and electromagnetic fields is then given 

by  

,
2

1
=

2
gFgRLminimal 


(7) 

where g is the determinant of the metric, and 

42 /8= cGN , with Newton’s gravitational constant NG

and the light velocity c . The latter factor secures that the 

integral over the Lagrange density and the whole space is 

unchanged when the integral is transformed with an arbitrary 

coordinate transformation. One demands that this integral 

becomes minimal for the real metric fields and the vector 

potential, which indicates that either gravitational fields 

produce electromagnetic fields or vice versa, i.e. the 

governing field equations are the Euler-Lagrange derivatives 

of the Lagrange density with respect to the metric fields and 

the components of the vector potential:  

,
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 where )(if  are the g  or the A , and these derivatives 

have to be set to zero. For minimalL  one obtains the Einstein 

equations 

,
8

=
2

1
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T
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RgR N (9) 

 where 


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
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

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4
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 is the energy-momentum tensor of the electromagnetic field, 

and the Maxwell equations for the vacuum  

0,=;


F (11) 

 where the semicolon denotes the covariant derivative 

,=;






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x

A
A 




(12) 

 where 
x is the coordinate  . In this linearized form, the 

Kaluza-Klein theory for the unified gravitational and 

electromagnetic field is also called the Einstein-Maxwell 

theory. 

In five dimensions, apart from the curvature R  and a

cosmological constant, there is exactly one further Lagrange 

density that leads to field equations of second order Lovelock 

[1971]. It is the so-called Gauss-Bonnet density  

  .)(4= 2

AB

AB
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(13) 

 For the projection of the five-dimensional metric to the space 

time one sets  
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 where the prime indicates independence from the coordinate 
5x . This special form also secures that A transforms like a 

U(1) gouge field. If one wants to have only a gravitational 

field and an electromagnetic field, one has to assume 

const== 0 . (This is the original ansatz of Kaluza

[1921] and Klein [1926].) Up to boundary terms, BonnetGaussL 

then reduces to [Mueller-Hoissen, 1988]: 

 

2
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 Terms in the Lagrange density that are quadratic in the 

curvature tensor are irrelevant for the classical dynamic 

[Mueller-Hoissen, 1988], and terms that are bi-quadratic in the 

tensor of the electromagnetic field are not considered, since 

those terms would lead to second order derivatives of g

entering the field equations also quadratically and the first 

derivatives of A  also entering the field equations bi-

quadratically. For such equations the Cauchy problem 

couldn’t be posed properly. With the substitution 
4

1
 for

3

0
2

1
  one obtains a Lagrange density 

,)4(
4

1
= gRFFRFFRFFLnotminimal  






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(16) 

 in which the gravitational and electromagnetic fields are 

coupled nonlinearly, since the terms are triple products where 

the curvature tensor enters linearly and the Maxwell tensor 

enters quadratically. The full Lagrange density is then  

,= notminimalminimal LLL  (17) 

 which leads to the field equations 






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
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 2

1

2

1
=0
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 where   stands for the covariant derivative,   is the 

Kronecker delta and the brackets are defined as follows:  
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 The equations of motion for test particles follow from the 

variational principle  
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 with variation with respect to 
d

dxA

, and   is the Eigen-time 

of the particle. When projected into the space time, 
5x

becomes a constant and thus 0=
5

d

dx
. The variation is then 

restricted to the remaining four velocities. This variational 

principle has the meaning that the line connecting two events 

has the smallest possible length. The corresponding Euler-

Lagrange derivatives then yield  
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 where q  and 0m  are the charge and the rest mass of the test 

particle. In (23) the first term on the right side of the equation 

is the correct Lorenz force term that appears in addition to the 

Christoffel term of the theory with pure gravitational fields. 

The equations (18), (19) and (23) constitute the Kaluza-Klein 

theory for unified and nonlinearly coupled gravitational and 

electromagnetic fields. 

III. THE SOLUTION OF THE FIELD EQUATIONS IN THE 

SPHERICALLY SYMMETRIC CASE

In the static spherically symmetric case the line element in the 

vacuum can be expressed as  
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 where t  is the laboratory time of a remote observer, r ,  , 

and   are spherically symmetric coordinates, 
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represents the time dilation, and 
eg =11 represents the 

Lorentz contraction. For the tensor of the electromagnetic 

field we make the ansatz  
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 where )(ra  is the zero component of the vector potential or 

the scalar potential. 

We now insert (24) and (25) in (18) and (19), which yields 
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 Equation (26) is already integrated one time and k  is an 

integration constant (it is the Coulomb constant). If one 

identifies 2=


eD , 2=




eC , rY = , aA = , and 

0=0B , one finds that the system of equations (26) to (29) is 

identical with the system of equations (2.8) to (2.11) in 

Mueller-Hoissen & Sippel [1988]. Since we have three 

unknown functions, a ,  , and  , only three of the four 

equations (26) to (29) can be independent. We can choose (29) 

as the dependent one, and indeed Mueller-Hoissen & Sippel 

[1988] shows that (29) is a consequence of (26) to (28). 

Equation (27) can be rearranged as  
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If one inserts 
'a from (26), one gets  
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 For )(uf  we make the ansatz for a power expansion: 
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n

uauf 


(38) 

 We rewrite (36) as 

,
2

=))((
)( 22

23 k
uf

du

d
u

du

udf 
 (39) 

 and insert the expressions 

2

3

1=

2

321 3)(32=
)( 





  n

n

n

uanuauaa
du

udf
(40) 

 and 

,=))(( 2
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23 













 n

knk

n

kn

nuaauf
du

d
u (41) 

 where we used the Cauchy product for the square of a power 

series. This yields  

.
2

=3)(32
22

2
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3

1=

2

321

k
uaananuauaa n

knk

n

k

n
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
 


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















 

(42) 

 We perform a comparison of coefficients on both sides of the 

equation and obtain  

0==,
2

=,2=(0)= 32

22

10 aa
k

aconstantnintegratiofreeaasmfa




1,2,3,=,
3

=
0=

3 nforaa
n

n
a knk

n

k

n  



(43) 

 This formula is as valuable as having an analytic solution, 

since we can get a solution as precisely as we whish by 

summing up enough terms in the power series. For the 

coefficients 4 to 13 one obtains  

10
=,

2
=

44

5

22
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 k
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mk
a 

7

8
=0,=

2222

76
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15
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=

266
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244
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a
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77

204
=,

5

16
=

3424

11

3232

10

 mk
a
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a 

.
390

)3840(23
=,

320

223
=

466322

13

366

12

 mkk
a

mk
a


 (44) 

 We note that the power series has an alternating sign, which 

alone already guarantees the convergence of the series. 

According to (37) we get  

,
)(21

1
=

52

1 uOuamu
e




(45) 

 which is identical with the so-called Reissner-Nordstroem 

metric for 0= , and the parameter m2  can be identified 

with the so-called Schwarzschild radius. We note that the 

Reissner-Nordstroem metric has no event horizon when 

1

2 < am , which is fulfilled if the charge of the gravitational 

center is sufficiently larger than the mass of the gravitational 

center. In this case a test particle can approach the singularity 

at the origin of the gravitational center. 

In order to determine the function 
e we add equation (27)

and (28):  

].)[(][2=0 22 rea '''    
(46) 

 If one substitutes 
'a from (26), it follows 

.

1)](
1

2[1

2
=)(

2

3

3

22
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






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r

r

k
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(47) 

 With the definition 

)]()([=)( uuug   (48) 

 it follows 

.
)](2[1

4
=

)(
23

3

1

ufu

ua

du

udg






(49) 

 The boundary condition is 0=(0)g , since asymptotically 

for large r  it should hold  =  as in the Reissner-

Nordstroem case. Because of 
)(21

=
)(

3

1

ufu

a

du

udf


we 
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have 

.
)(4

=
)(

2

1

3


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
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

du

udf

a

u
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 Because of 

n

n

n

n

n

n
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du

udf
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1
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1
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 we get the Cauchy product 

n
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(54) 

 where the coefficients na are taken from (43). If one knows

)(ug , one obtains 

.
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e
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(55) 

 Finally, one obtains from (26) 
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 In equation (56) it is 
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 Thus, we have 
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 where we used n -times Cauchy products. Again with 
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 where we applied another Cauchy product. Via integration we 

obtain  
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 where we have set 0=(0)a , since the Coulomb potential 

shall vanish for r . 

IV. THE EQUATIONS OF MOTION FOR TEST PARTICLES

If one inserts (24) and (25) in (23), one obtains 

,)()(= reqartctc ''    (62) 





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



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
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
  2222 ])[(][
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][

2

1
=    rertcer ''

,)(])[sin( 22 tceqare '      (63) 

,])[cossin(
2

= 2  







 r

r
(64) 

  )cot2(
2

= 







 r

r
(65) 

 for the geodetic equations. (The geodetic equations have been 

derived even for the more general rotational symmetric case 

[see, e.g., Carter, 1968; Misner, 1973, equations 33.32a-d with 

the solutions 33.37a-d]. However, the two systems of 
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equations can be linked with an arbitrary coordinate 

transformation. Thus, it is non-trivial to proof the equivalence 

of both systems. We have checked our result with computer 

algebra.) 

We multiply (62) with 
e :  

rqatcretce ''    =
(66) 

 It is 
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d
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 and thus 
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d
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0=
)(





d

qatced 



(71) 

,=  qatce   (72) 

where the integration constant   can be interpreted as

energy parameter (to be more precise, 
2 is the energy per

mass unit of the test particle). 

Equation (63) can be replaced with the definition of the line 

element (24), since one geodetic equation or a combination 

must be identical with that definition. (This can also be shown 

with the help of the field equations (26) - (28) directly.) If one 

considers that for the chosen signature of the metric 
222 = dcds  holds, one obtains after division by 

2d :  

 .][sin][][][= 22222222    rretcec

(73) 

 The coordinate system can always be chosen such that for a 

starting value 0
2

=


 and 0= holds. However, 

2
=


 is a solution of (64) for all  , and because the start 

values determine the solution unambiguously, this is exactly 

the solution that is searched for. Thus, the trajectories are 

planar:  

.
2

=




(74) 

 With this, also (65) simplifies, and we obtain 
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)(log= 2rconst  (79) 

,=
2r


 (80) 

 where the integration constant   can be interpreted as a 

rotational momentum parameter. More precisely,   is the

rotational momentum per mass unit of the test particle. 

With the solutions (72), (74) and (80), (73) yields:  
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 We again introduce the variable 
r

u
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= , for which it follows
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 It follows 
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 for 0= . In (83), 
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2
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1
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c

uuV  
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




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(84) 

 can be seen as a energy- and rotational momentum dependent 

pseudo potential, in which a particle at a position u  moves 

with the trajectory parameter  . 

In the case 0=  we obtain from (81): 

 ,][= 22)(   ecqaer   (85) 

 where the negative sign belongs to a falling particle. 

For the further discussion we look at the case with 0= , i. e. 

the Einstein-Maxwell case, and where the electromagnetic 

interaction is dominant. Since the Gauss-Bonnet Lagrange 

density for the non-linear coupling consists of triple tensor 

products between a quadratic term in the Maxwell tensor and a 

curvature tensor, whereas the Maxwell scalar of the Einstein-

Maxwell theory is quadratic in the Maxwell tensor alone, the 

non-linear coupling terms are second order correction terms to

the terms stemming from the Maxwell scalar. So in this case 

the solutions of the Einstein-Maxwell theory are very close to 

the full solutions of the non-linear theory. One finds that

within Einstein-Maxwell’s theory one can make substantial 
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analytic advances, thus capturing the essence of the physics of 

the theory. 

For 0=  the solution of the field equations is the so-called 

Reissner-Nordstroem metric 

2
22

2
21== u

k
muee

 
 and kua = . The pseudo-

potential (84) then reduces to 
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 (86) 

 and the radial geodetic equation (85) to 

.][= 22  ecqar  (87) 

 One sees that the pseudo potential is a polynomial of fourth 

order in u  now. The specifications are  
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 The four zeros of the potential (88) can be calculated exactly 

following the method of the Italian mathematician Ferrari 

[see, e.g., Reinhard & Soeder, 1984]. This method goes as 

follows. In the equation  

0=234 ducubuau  (90) 

 on substitutes 
4

=
a

zu  . This yields

0,=~~~ 24 rzqzpz  (91) 
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=~,

8

3
=~ 32 a

ba
cqabpwhere 

.
256

3

16

1

4
=~ 42 aba

ca
dr  (92) 

 The equation (100) can be rewritten as 

0,=)()( 222 RQzPz  (93) 

.~=,~=2,~=2 222 rRPqQRpQPwhere  (94) 

 This means that (93) is fulfilled if 

RQzPzorRQzPz  == 22
(95) 

is fulfilled. In the case 0=~q , the biquadratic equation

0=~~ 24 rzpz  can be reduced to quadratic equations 

r
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2
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
 . 

In the case 0=~ q  one has to determine a solution ),,( RQP

of the system of equations pQP ~=2 2 and qQR ~=2

and rRP ~=22  first. This system can be rewritten as:

,
2

~
=)(3,~=)(2,

)~4(

~
=)(1 22

2

2
2 q

QRfrPRf
rP

q
Qf 



0,=~

8

1

2

~~
~

2

~
)(4 223 q

rp
PrP

p
Pf 

whereby )(3 f  is basically a sign check. For a solution P  of

)(4 f one chooses from the solutions of )(1f and )(2 f a 

pair ),( RQ  that satisfies )(3 f , and inserts ),,( RQP  in 

RQzPz  =2
or RQzPz  =2

. The latter are 

two quadratic equations that have the solutions 

,
224

=

2

0/1 PR
QQa
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
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 (96) 
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2/3 PR
QQa
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
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 where we resubstituted 
4

=
a

zu  . 

For the solution of )(4 f we do the following: We set  

2~

8

1

2

~~
=ˆ,~=ˆ,

2

~
=ˆ q

rp
crb

p
a  (98) 

0=ˆˆˆ)(4 23 cPbPaPf  (99) 

 We substitute 
3

ˆ
ˆ=

a
zP   and obtain 

0=ˆˆˆˆ3 qzpz  (100)

.ˆˆˆ
3

1
ˆ

27

2
=ˆ,ˆ

3

1ˆ=ˆ 32 cbaaqabpwith  (101)

For 0=p̂  one gets 3 ˆ=ˆ qz   or 3 ˆ
3

ˆ
= q

a
P  , 

which is in fact three solutions, since 
3 1 has three 

solutions, the real of which is 1 .

In the case 0=ˆ p , the substitution vuz ˆˆ=ˆ   yields

0.=)ˆˆ)(ˆˆˆ(3ˆˆˆ 33 vupvuqvu 

(102) 

If )ˆ,ˆ( vu  is a solution of

0,=ˆˆˆ30=ˆˆˆ 33 pvuandqvu 
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(103) 

then vuz ˆˆ=ˆ   is a solution of (100). (103) can be rewritten

as  

0=ˆˆˆ3ˆ
27

1
ˆ

4

1

2

ˆ
=ˆ 323 pvuandpq

q
u  (104) 
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1
ˆ

27

2
=ˆ,ˆ

3

1ˆ=ˆ 32 cbaaqabpwith  (105) 

 With this the task has been reduced to the solution of a pure 

cubic equation of the form  

.ˆ,ˆ=ˆ3 Ckwhereku 

(106) 

 This equation has three solutions in the body of the complex 

numbers C : 
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3

1 iwhereuuuuku 

(107) 

The equation 0=ˆˆˆ3 pvu   then yields values 1v̂ , 2v̂ , and

3v̂ for 1û , 2û , and 3û . One obtains solutions of (100) as:  
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a
zPand

a
zP

a
zPthusand 

(108) 

V. THE SOLUTION OF THE RADIAL GEODETIC EQUATION IN 

EINSTEIN-MAXWELL’S THEORY 

We have derived the radial geodetic equation in Einstein- 

Maxwell’s theory (87) from theory rigorously. We now want 

to parallel this derivation with a chain of heuristic arguments. 

This argumentation in terms of simple physical pictures and 

processes gives us a deeper insight in how natural physical 

processes work down to the level of photon and graviton 

interactions. Strictly speeking, one would have to build up the 

interaction in terms of summations over Feynman graphs, and 

the classical fields would be the envelopes of the Hamiltonian 

of these summations, but here we have a seldom case where 

the fields can be treated in a purely classical and smooth sense 

and integrated as such. 

We start our heuristic derivation with noting that the 

gravitational center is placed statically in the orign of the 

coordinate system, and it influences the motion of the orbiting 

object with gravitational and electromagnetic forces. It is 

found that in the vicinity of the object, where these forces do 

not vary much, the total force F  on the object is proportional

to the acceleration r  of the object. The proportionality factor

0m  is called the mass of the object.  

rmF 
0= (109) 

 This is, in principle, not very difficult to comprehend, since it 

simply states that if you want to increase the velocity of an 

object two or multiple times, you need to increase the force on 

the object two or multiple times. In a spherically symmetric 

system, F  is a function of r  alone. From multiplying

equation (109) with r , we get

rrmrrF   0=)(

  ,
2

=)( 20








 r

m

d

d
rE

d

d



(110)

 where )(rE  is a function with )(=)/( rFdrrdE . Please 

remember the chain rule and the product rule. )(rE  is called 

the potential energy function of the force field F . The other

term, 
2

0/2rm  , is called the kinetic energy of the object. From 

(110) it follows

,
2

==)(
2

2020
totv

m
constrEr

m
 (111) 

 where totv  is a constant velocity, which can be understood as 

a conserved energy parameter for the full system. One of the 

most important interaction forces is the electromagnetic 

interaction force. This interaction can be understood as an 

exchange of photons between the charged gravitational center 

and the object, where these photons travel along bipolar field 

lines from the gravitational center toward the object. Yet, 

those photons traveling along bent field lines in this bipolar 

field can be thought to be projected on the straight line that 

links the charged gravitational center and the object. The 

object catches these photons and remits them immediately. 

Then, the photons travel back to the charged gravitational 

center, where they are caught and remitted likewise. After this 

second reemission, the process repeats. The photons 

themselves, or better to say the whole photon field, since there 

are many, are disturbances in the space-time continuum, 

which consist of periodic small time-dilation and Lorentz-

contraction effects, traveling like a wave through the 

continuum. The bouncing back and forth of these photons, 

thus, creates an association between the charged gravitational 

center and the object, which is identical with the force. Since 

the electromagnetic wave has a chirality, which means that the 

wave vector pointing from the direction of the photon 

propagation to the location of the disturbance in the space-

time continuum rotates either clockwise or anticlockwise 

around that direction of propagation, the electromagnetic 

interaction force can either be attractive or repulsive. The 

force is attractive, when the photons being sent out from the 
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charged gravitational center have the opposite chirality than 

the photons sent out from the object, since in this case the 

oppositely traveling photons engage each other maximally, 

thus pulling the spirals of chirality tightly together. In the case 

that the photons being sent out have the same chirality, they 

virtually decouple, and the spirals of chirality act comparable 

with compressed spiral springs, which drive the charged 

gravitational center and the object apart from each other. 

Depending on the kind of chirality the charged gravitational 

center and the object are sending out, they are denoted as 

positive or negative charged. 

A photon field has another important property. When the 

photons in the field come very close to each other, the time-

dilation and Lorentz-contraction effects of which they consist 

of have the tendency to cluster together. This creates a force in 

the photon field itself that distracts a photon from flying 

straight on, and, instead, forces it into an orbit around the 

clustered other photons. Thus, an entity emerges, that consists 

of photons orbiting each other. The radius of this rotating 

object is ever shrinking, until it has reached the size of a very 

small point. This entity is then called an elementary particle. It 

is not easy to shift the location of such an elementary particle, 

since such a shift requires the shift of all the space-time 

fluctuations involved to another place. Hence, the elementary 

particle has a natural resistance to its replacement. This 

resistance or inertia force is called the gravitational force of 

the object. When two objects come close to each other, there 

is still the tendency that both objects would like to cluster 

together like sticky meat balls in a bowl of a kitchen. 

Therefore, the gravitational force between the two objects is 

always attractive, regardless of the charge they have. The 

gravitational force is still there, when one or both of the 

objects are uncharged, since being uncharged simply means 

that two oppositely charged particles orbit each other very 

closely, whereby the absolute value of the both charges is 

identical. This gravitational force, like the electromagnetic 

force, can also be described with a field consisting of 

exchanged quantum, which are called gravitons in this case. 

These gravitons, however, have the quality that they never can 

repulse each other. 

We now return to the discussion of the object with mass 0m , 

on which the observer travels. In all, this object can be 

understood as an entity of many particles, in all of which 

photons are orbiting each other. Since the velocity of these 

photons is always the light velocity c , they contribute with a 

value /22

0cm  to the balance of the dynamical energies: 

202020

22
=)(

2
c

m
v

m
rEr

m
tot  (112) 

 Here, the term /22

0cm  is subtracted from /22

0 totvm , since 

this energy amount is not available to be fed into an increase 

of the kinetic energy /22

0rm   of the object. 

If e  and Q  are the charges of the object and the charged 

gravitational center, which can be understood as the source 

strength for the number of photons that both entities can emit, 

then  

2

04
=

r

Qe
Felec


(113) 

 is the electromagnetic force between the charged gravitational 

center and the object, where the factor 04 with the so-

called permissivity 0 is a scaling factor that takes the

procedure of charge measurements into account. Since the 

electromagnetic force is inflicted with radially propagating 

photons that intersect with a sphere of area 
24= rA   at a 

distance r , and the number of such intersecting photons is 

conserved, in twice the distance only a quarter of these 

intersecting photons cover the same area on the surface of the 

sphere. Thus, the force must decrease proportional to 
21/r  

exactly. There are no measurements thus far that have 

revealed any deviations from that law. We note that elecF  is 

negative, i.e. directed toward the charged gravitational center, 

if Q  and e  have opposite sign. For the energy elecE  of the 

electromagnetic field that has the property 

elecelec FdrdE =/ , we get 

,
4

=
0r

Qe
Eelec


(114) 

 since 
21/=)/(1/ rdrrd . Now, cmp dyn= is the 

relativistic momentum of an object. Here, dynm is the 

dynamical mass of an object, which depends on the object’s 

velocity and on its position in the system. Yet, we do not have 

to bother much about this dynamical mass, since we measure 

everything in the rest frame of the object. Hence, cmp 0= . 

Because of the conservation of the momentum, the 

electromagnetic interaction field travels with the same 

momentum as the object, seen from the point of view of the 

object. Thus, cmp 0= is also the momentum of the 

electromagnetic field. pEv /=  is the relativistic dynamical 

velocity of a field. Thus, we have 

r

Qe

cmp

E
v elec

elec

00 4

1
==
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(115) 

 as the dynamical velocity of the electromagnetic field, with 

which the object and the charged gravitational center interacts. 

With this we get  
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




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 (116) 

 as the energy balance of the system, which includes the 

electromagnetic interaction between the object and the 

charged gravitational center. Here, the dynamical velocity 

elecv  has to be added to totv , since this velocity adds to the 

ability of the system to feed energy into the kinetic energy 

/22

0rm   of the object. Note that for an attractive force, i.e. 

when Qe  is negative, totv  is actually diminished, such that r
can only get smaller values at the same distance r . This
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concept of adding the dynamical velocity of the 

electromagnetic field to the total dynamical velocity of the 

system is known as the principle of the "covariant derivative" 

in particle physics, the science that deals with the motion of 

elementary particles. This principle expresses the fact that the 

overall effect of an electromagnetic force field is such that the 

increase of the total velocity of the system is retarded with the 

interaction field. The situation is similar to a horse carrying a 

wagon, where the versatility of the horse is diminished with 

the wagon which it has to drag along. 

The gravitational force between the object and the 

gravitational center, then, is  

,=
2

0

r

MmG
F N

grav

 (117) 

 where NG is Newton’s gravitational constant and M is the

mass of the gravitational center. This force law is quite similar 

to the force law for the electromagnetic interaction, since here, 

too, the interaction is inflicted with the interchange of 

gravitational field quantums, the gravitons. Similarly, we get  

r

MmG
E N

grav

0=  (118) 

 for the gravitational energy, which satisfies 

gravgrav FdrdE =/ . With the inclusion of the gravitational 

interaction between the object and the gravitational center, the 

energy balance reads  
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 Here, the energy function gravE  is actually retrieved from the 

general energy function )(rE  on the left side of the balance, 

i.e. it enters the balance linearly. This is contrary to the entry

of the energy function elecE  in the balance as a squared term. 

The difference, basically, is related to the fact that in the 

electromagnetic interaction the photons have to interact with 

two bodies in order to establish the connection. Contrary to 

this, in the case of the gravitational interaction, the interaction 

is already established when the graviton, coming from one 

object, reaches the other body and sticks to it. Thus, the 

gravitational interaction is quite a sticky thing, and its effect 

merely is retrieving energy from the energy reservoir that can 

feed the kinetic energy of the object. 

It is still possible that the gravitational field of the object 

interacts with the electromagnetic field of the gravitational 

center. For this interaction, the dynamical self energy of the 

electromagnetic field of the charged gravitational center is  




4
4

=
0

2

r

Q
EEfield  (120) 

 and the dynamical self energy of the gravitational field of the 

object is  

4=
2

0

r

mG
E N

Gfield  (121) 

 The factor 4  stems from the fact, that the self-interacting 

fields are monopole fields, where radial field lines are 

stretched out on the surface of a sphere 
24= rA  . This is 

different to a field that interacts between two bodies, which is 

bipolar, and where the field lines can be thought of being 

distributed only along the straight connection line between the 

bodies. Hence, one has to substitute 

 4/=4== '' rrrAr  in the expressions of the 

dynamical field energies. This gives equations (120) and 

(121), if one drops the prime again. 

Since the electromagnetic field of the gravitational center 

moves with the momentum cmp 0= with respect to the 

object, and cmp 0= is also the momentum of the 

gravitational field of the object in the rest frame of the object, 

we get  
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 for the dynamical velocities of the electromagnetic field of 

the charged gravitational center and the gravitational field of 

the object. Thus, we get  
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 as the dynamic energy of the interacting electromagnetic field 

of the charged gravitational center and the gravitational field 

of the object. Note that this expression has a similar structure 

as /2= 2

0rmEdyn
  for the dynamical or kinetic energy of the 

object, where the velocity field of the object interacts with 

itself so to say. 

The energy balance now reads  
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 Note that this time dynEGE  enters the balance linearly, too, 

since it is a single sided interaction again, with sticky 

gravitons hitting photons. The term 
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is known as the 

gravitational potential or metric field of the charged 

gravitational field of a charged gravitational center. It has been 

rigorously derived from the general relativistic field equations 

of Albert Einstein by Reissner and Nordstroem. In the case 

that there is no charge of the gravitational center, this 

gravitational potential vanishes at a radius 
2/2= cMGr NSchwarz  . This radius is called the 

Schwarzschild radius. In the charge-free case the gravitational 

center shields itself with a sphere of this radius, and the time 

flow of the outside world comes to a standstill at this location. 

Also note that there is no term for the interaction between the 

electromagnetic field of the object and the gravitational field 

of the gravitational center, since in the rest frame of the object 

the electromagnetic field of the object vanishes. For the same 

reason there is no term for the self energy of the 

electromagnetic field of the object. There are also no terms for 

the self energy of the electromagnetic field and the 

gravitational field of the gravitational center, since from the 

point of view of the object these fields are static and do not 

contribute to the dynamic energies. 

Equation (124) can also be derived, of course, by rigorously 

solving Albert Einstein’s general relativistic field equations 

and equations of motion for a spherically symmetric static 

charged system with mass that is orbited with an object which 

has mass and charge (compare with (87)). Yet, this is a very 

cumbersome procedure. Here, I have given you a physical 

interpretation of each term that occurs in this equation of 

motion. Note that in the case of a very close approach of the 

object and the charged gravitational center the electromagnetic 

field - gravitational field interaction and the electromagnetic 

field interaction become dominant, since these interaction 

terms depend on 
21/r . By rearranging terms, we get 
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 Note that C  is always positive, since the velocity must either 

vanish for r (maximum case with cvtot = ), or the 

particle cannot reach infinity (case with cvtot < ). 

Thus we have 
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 In this expression it is 
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 Thus we have 
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 where the operation drd/  and the operation of multiplying 

with dr  and summing up, which is called an integration, 

compensate each other. 0 is the initial constant in this

summation process, i.e. a starting time. We set 
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where  is a more convenient parameter for the trajectory.  

CrACBBACBCrB 2=)(cos4)(cos4=2 22  













 
 )(cos

4
1

2
=

2


B

ACB

C

B
r (130)



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP.158-173 

169 | P a g e

 )(cosarccos
2

)(cos1
2

4
= 2

2

0 
CC

B

CC

ACB



 


CC

B

CC

ACB

2
)(sin

2

4
=

2




  













 
 )(sin

4

2
=

2


B

ACB

CC

B













 
 )(sin

4

2
=)(

2

0 
B

ACB

C

B
C (131) 

 The equations (131) and (130) are the equations of an 

elongated cycloide for the coordinates ( )( 0  C , r ) = 

( x , y ). 0 is a starting time, and the   sign in equation

(131) indicates that the cycloide can be crossed either in the

positive or negative direction.

Figure  1: Cycloid of the space time spiral for parameters 

0.5=A , 2=B , and 1=C . The object or spacecraft 

comes in from the left, crosses point d and reaches the

gravitational center at point a . Then, the spacecraft travels 

backward in time, reaches the lowest (negative) point b , and 

is back at the height of the gravitational center at point c . 

From then on, the spacecraft travels forward in time again, 

reaching the point d  and crossing point e . 

Geometrically, the cycloid can be constructed in the 

following way: There is a point, which has a constant y

coordinate CB/2 , and which is shifted in the positive x
direction by CB /2 , when the trajectory parameter 
increases, and we look at the positive sign in equation (131). 

This moving point is the starting point of a rotating pointer, 

which has the length BACBCB /4)/(2 2   and a rotation 

angle  , measured clockwise from the negative vertical. The

end point of this pointer is the point on the cycloide, which 

belongs to the specific trajectory parameter  . We get the

complete cycloid, when we let the whole thing rolling, i.e. 

increase   from zero to larger values.

In the graph of the cycloid, see Figure 1, r  becomes 

zero at the point c  when  
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 The same point has a (negative) time coordinate  
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 Since the cosine of an angle is the ratio between the adjacent 

to the hypotenuse in a rectangular triangle, the angle 
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 22 )(2
arccos

ACB

B
 is the angle in the rectangular 

triangle with the adjacent B  and the opposite AC2 . Thus, 

we have 
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the tangent of an angle in a rectangular triangle is the ratio 

between the opposite and the adjacent.  
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 We are also interested in the point e  in the diagram. It is the 

point above the time coordinate cC 0 , for which we have 
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 and the estimate  <</2 2 . This equation has to be 

evaluated numerically. Yet, we can get an approximate 

solution, by substituting 22 /2=   , and noting that 

/21cos=sin 2

222   . With these substitutions we get 

a quadratic equation for 2 from equation (135), which can

be solved for 2 . When we insert the result in equation(130),

we get 
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 for the distance between point a  and point e . 

Figure 1 is also the diagram for the navigation in 

space and time. We can read the diagram in two different 

ways: 

A)i) The spacecraft comes in from the left, crosses

point d , and reaches point a , where it plunges into the 

gravitational center. Since the spacecraft travels backward in 

time from then on, it has disappeared from our world, where 

we can only see objects traveling forward in time. However, at 

the same spatial level as the gravitational center, the spacecraft 

emerges at point c , from where on it propagates forward in 

time again. Yet, point c  is at a time  




























B

AC

B

AC

CC

B
cca

2
arctan

2
=2= 0 (137) 

 earlier than point a  (compare with equation (134)). This has 

the meaning that  the spacecraft has performed a jump ca

backward in time. 

A)ii) The spacecraft uses the negative branch of

equation (131). Then, the space time spiral is crossed in the 

opposite direction. The spacecraft comes in from the right, 

plunges into the gravitational center at point c , and reemerges 

at a time caac  =   earlier at point a  again. Thus,  the 

spacecraft has performed a jump ca forward in time.

The navigations of the spacecraft according to plan 

A)i) or A)ii) are  the principle of the time machine for

traveling into the past or to the future.

B) The spacecraft comes in from the left, crosses

point d , and plunges into the gravitational center at point a . 

There it disappears. We can only observe what is traveling 

forward in time. Therefore, we observe that at the time of 

disappearance,  the spacecraft reappears at point e , i.e.  the 

spacecraft has performed an instantaneous spacial jump 

aer (compare with formula (136)). This is the principle of 

instantaneous deep space travel. 

Note that in equation (136) there is a factor 

)1/(=1/ 22

totvcC  on the right side. By choosing the initial

speed totv of the spacecraft very close to the light velocity c , 

in which case the object can reach infinity, i.e. C1/ , we 

see that we can bridge any distance in space by instantaneous 

deep space travel. Thus, a traveler, who can set free arbitrary 

energies for the acceleration of his spacecraft, can reach any 

liked location in the universe instantaneously, no matter how 

far this location is. 

In equation (137), for reasonable charges, we have 
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 where we used the polynomial approximation 


753

=)(arctan
753 zzz

zz of the arctangent 

function for 1|<| z , and 
2

=)(arctanlim


zz  . From 

equation (138) we can see that we can get arbitrarily large 

temporal jumps, if we increase the charge Q  of the 

gravitational center, increase the charge e  of the object, or 

decrease the mass 0m of the object. On the other hand, we 

can see that the temporal jump is of the order 
31/c . Thus, it is 

a third order effect in the dynamics of micro physical systems. 

As an example, we can now look at a electron - 

positron system, where a negative elementary particle, called 

electron, orbits a positive elementary particle, called proton, 

which charge has the same absolute value as the electron, and 

which has roughly 1836 times the mass of the electron. This 

system constitutes the most simple atom we can think of. For 

this system we get 

0,

222

0 34.259106.4405=)/(2= 

 
tot

vcauncertain seccm   ,

where uncertain is the uncertainty in time for a measurement

of an electron in a process where the electron with total energy 
2

0cm  gets annihilated and recreated again. 

If we take the process of an electron repeatedly 

plunging in an neighboring proton as an stochastic process, i.e. 

successive dives of the electron are correlated up to a certain 

extend, then a certain number n  that defines the maximal 

number of successively correlated dives exist. With n  given,  

,)(1=)(,

knk

pn pp
k

n
kb 








(139) 

where p  is the probability for a single dive, is the probability

with which k  successive dives occur, where nk 0 . The 

probability distribution (139) over k  is called “binomial 

distribution”. For this binomial distribution the relationship  
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 holds [see, e.g., Reinhardt & Soeder, 1982]. The probability 

function )(x  is called “normal distribution”. The 

relationship (140) is the better fulfilled the larger n  becomes 

and becomes exact for n . However, one can look at an 

approximation accuracy function  
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 between the normal and the binomial distribution, which is a 

function of n . Figure 2 shows npS , for 1/2=p . 

Figure  2: Approximation accuracy npS , between the normal

and the binomial distribution for 1/2=p . 

One finds that npS , is generally a monotonously falling

function with n . Yet, npS , has a slight irregularity in the 

vicinity of 34n . At a local minimum 34.259=minn the 

binomial distribution is particularly close to the normal 

distribution. This means that in a stochastic process where 

about 34 elementary processes are correlated, the normal 

distribution is already a very good approximation to the 

probability distribution of the stochastic process. The normal 

distribution is again a very good approximation to the 

probability distribution of the stochastic process for much 

larger n . However, the more correlated elementary processes 

are involved, the less likely the corresponding stochastic 

process is realized in nature. Thus, one indeed finds that in 

most stochastic processes in nature about 34 elementary 

processes are correlated that can be described using a normal 

distribution as an empirical law. (The communication of that 

law is the merit of Dagmar Richter, who was my high school 

teacher for mathematics and physics, who had an education in 

statistical physics, and who is the widow of Arne Richter, the 

long-term general secretary of the European Geophysical 

Union (EGU). I would like to introduce here the constant 

34.259== minRichter nC  as the “Richter constant”.) 

Thus, in a natural stochastic process that can be 

described with a normal distribution, the expectation value for 

the change of the stochastic variable   is  

,=)( elemRichterC  (142) 

 where elem is the change of the stochastic variable   in the

elementary stochastic process. 

Hence, we have 

uncertain
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vcaRichter cmC  =)/(2==)( 2

00,  (143)

 for the expectation value of a temporal displacement of an 

electron for the stochastic process of temporal displacements 

of electrons successively plunging into neighboring protons, 

which is exactly the uncertainty time according to 

Heisenberg’s uncertainty principle for a process in which an 

electron is annihilated and recreated, i.e. enters and exits a 

charged gravitational center. 

We can rewrite (143) as 

,2= 0,

2

0 
tot

vcaRichterCcm  (144) 

 where 0, 
tot

vca is taken from (137) for 0totv , which 

means that we have found a derivation for the empirical 

Planck constant 2=h .

Alternatively, we can write 
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for the time and energy variations t  and E  of the

electron in the electron-proton system, which is Heisenberg’s 

uncertainty principle for time and energy. 

If one considers that a disturbance of the system 

would propagate with the light velocity, one gets  

E
c

pandtcx 
1

== (146) 

 for the spatial variations x and the variations in the

momentum p , and hence 

,
2

=


px (147) 

 which is Heisenberg’s uncertainty principle for spatial and 

momentum variations. Empirically, one finds that one has to 

set  

2


 Et (148)

,
2


 px (149)

 if the probability functions do not describe idealistic states, 

which increases the uncertainties. 

Mathematically, 

,)(= 2**  xxx   (150)



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP.158-173 

172 | P a g e

where   is the probability distribution or probability

amplitude of the particle, 
*  is the complex conjugate of that 

quantity, x  is the spatial position vector, and the integrals are 

carried out over the entire spatial domain, and  

,))((= 2**     iip (151) 

since the operator  i  retrieves the momentum from a

wave function describing a photon field (which carries 

rotational momenta in multiples of h ). 

It is a straightforward calculation that the probability 

distribution  

,
1

= 3/2
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e r
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 where 02

2

0 1/== a
em


 is the reciprocal so-called “Bohr

radius” 0a , satisfies (147) exactly with (150) and (151) [see,

e.g., Greiner, 1984]. (Consider that in this notation of the

atomic physicists the parameter 
2e  for the product of the 

charges contains the Coulomb constant.) Note that (152) 

becomes maximal when 0r , and hence describes our 

stochastic process of electrons plunging into the gravitational 

center of the proton quite well. 

On the other hand, (152) satisfies 
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 where 
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2
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eem
E 


 is the energy of an electron 

orbiting the proton on a classical circular trajectory with the 

radius 0a . 

From here, it is straightforward to postulate that any 

other resonant state in the hydrogen atom must satisfy an 

equation  
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
(154) 

 for energy values nE for E for which normalizable 

solutions   exist. This then generalizes to

 )(
2

= 2

0

2

xV
m

i t 


 (155) 

 in the non-stationary case and a general interaction potential 

)(xV , since the operation ti  retrieves the energy from a 

wave function that describes a photon field that carries the 

energy in packages  , where f 2=  is the angular

frequency of the wave. 

Equation (155) is the so-called “Schroedinger 

equation”, and with it we have derived quantum mechanics 

from the principle of electrons repeatedly plunging into 

neighboring protons. 

CONCLUSIONS 

VI. We have revisited the Kaluza-Klein theory and solved

the field equations of the Kaluza-Klein theory with constant

coupling field between the electromagnetic and

gravitational field in terms of power expansions in the

coordinate for the spherical symmetric case entirely. In the

Einstein-Maxwell case where the electromagnetic field and

the gravitational fields are coupled linearly, we discussed

the exact behavior of the roots of the pseudo potential for

the motion of the position   as a function of the planar  -

angle for an orbiting particle. We investigated the analytic

continuation of a trajectory of a test particle entering the

gravitational center of a central body, which has performed

a temporal jump when exiting the gravitational center

again. This temporal displacement, if repeated, constitutes a

stochastic process that has an expectation value of the

reduced Planck constant divided by two times the rest mass

of the electron, since the temporal displacement process of

the electron goes along with an annihilation and recreation

process of the electron that enters and exits the gravitational

center. Thus, our finding corresponds to the existence of a

Heisenberg uncertainty relation with respect to temporal

and energetic fluctuations of the electron in the electron-

proton system, which translates to an Heisenberg

uncertainty relation with respect to spatial variations and

variations in the momentum of the electron in the electron-

proton system. The validity of the latter uncertainty relation

is equivalent with the existence of a Schroedinger equation

governing the statistic behavior of the electron in the

electron-proton system. In this way we have derived the

ground principles of classical quantum mechanics from the

unified gravitational theory for gravitation and

electromagnetism straightforwardly. Further work that

investigates the behavior of test particles with non-zero

rotational momentum and that orbit a charged gravitational

center is under way.
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