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Abstract— Die Arbeit beschaftigt sich mit einem 

doublierten System bei kalter Reserve emit ex oven 

verteilter Ausfallzeit and be-Profiliebigen 

Reparaturzeitverteilungen. Profitgleichungen warden 

unto- allgemeinsten Kostenstrukturen abgeleitet, wobei die 

trate des Systems in einem Zustand von drei Parametern 

abhangt — dem gegenwartigen Zustand, dem nachsten, .1 

nspektionszustand und der Zeit, zu der die Profitrate 

gemessen wird. Die L a pl a c e - Transformierten des 

Profits, den das System in einer gegebenen Zeit abwirft, 

we die Diskontrate exponentiell ist, werden erhalten. Das 

asymptotische erhallen des Profits wird ebenfalls 

diskutiert. Weiterhin wird der Profit als fir die Effektivitat 

des Systems vorge-schlagen. Ffir den Fall, daft in jedem 

Zustand zwischen verschiedenen Moglichkeiten der 

Steuerung zu entscheiden ist, wird ein 

Optimierungsproblem zur Bestimmung der optimalen 

Steuerungsstrategie formuliert, welches den Langzeitprofit 

maxi-miert. ilowa rds Iterationsmethode wird benutzt, um 

einen Algorithmus zur Bestimmung der optimalen 

Strategie (fur das System zu entwickelne The paper deals 

with a 2-unit cold standby redundant system with 

exponential failure-time and general repair-time dis-

tributions. Profit equations for the system have been 

developed under the most generalized cost structure in 

which the earning rate of the system in a state depends 

upon three parameters — present state, future state of 

visit and time at which the earning rate is measured. 

Laplace      transforms of the profit that the system will 

earn in a given time when the discounting rate is ex-

ponential, are obtained. Limiting behaviour of the profit 

has also been discussed. Further, profit has been suggested 

as the measure of system's effectiveness. When different 

alternatives are available to a decision maker in each state 

to operate the system, an optimization problem to 

determine an optimal operating policy for the system 

which maximizes long term profit has been formulated. 

Howard's policy iteration method is used to develop an 

algorithm to determine an optimal policy for the system.  

Keywords:  Communications, Construction Partisipatori, 

Diffusion of innovation Adoption, Self-help Housing Stimulants 

Help. 

I. INTRODUCTION  

It is the complexity and multiplicity of influential factors 

which make the operational environment of standby redundant 

systems quite sophisticated and involved. Some of the factors 

are critical as they have direct and signi-ficant impact upon 

system's performance whereas there are factors that have 

marginal contribution in generating environment under which 

systems have to operate. In order to have better understanding 

of a standby system    its operational conditions and the 

interactions between the two, economic analysis is of 

paramount importance. More precisely cost feasibility and cost 

sensitivity are two major measures in any evaluation study. 

Unfortunately, economics of standby redundant systems has 

•not received sufficient attention of workers in this area. Of 

course, some of the papers did concentrate on economic 

aspects of standby systems (MINE and KAwm. [9], KUMAR 

[6]), but they are not significant when compared with the 

number of articles appeared to describe the stochastic 

behaviour of such systems by obtaining mean-time-to-system 

failure, steady-state availability, mean recurrence time to a 

state etc. (BRANsoN and SHAH [1], NAKAGAWA and 

OSAKI Pit KUMAR [7], GOPALAN and D'SOUZA [3], 

KISTNER and SUBRA1VIANIAN [5], CHOW [2]). For a 2-

unit parallel redundant system with good, degraded and failed 

states a main-tenance policy was discussed that maximizes the 

net expected profit rate from the system over an infinite time 

span (MINE and KAWAI [9]). Later, they considered 

inspection and replacement policy for one unit system (MINE 

and KAWAJ [10]).  

 

As expected profit is one of the most important parameters 

in economic evaluation of standby redundant systems, a few 

papers have appeared to obtain analytic expressions for 

expected profit in a standby system ope-rating under different 

operational environment (KUMAR [6], KUMAR [7], KUMAR 

and LAL [8]). In all the papers, a simple cost structure is 

considered viz., 

 

a)    fixed earning (loosing) rate of the system in each state;    

b)   fixed rewards (costs) at the time of transitions;  

c) no discounting of payments received in future.  

 

In a recent paper KUMAR and LAL [8]) the authors have 

given a hint to relax c) only. However, the other two 

assumptions a) and b) also need be relaxed as situations do 

arise when the earning rate of a system depends not only on 

the present state but also depends upon the future state of 

visit and it is not fixed throughout the duration of stay in a 
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state. Further, in the above paper two optimization 

problems were posed for future work.  

 

The purpose of the present paper is two-fold:  

 

(1) to present the most generalized cost model and discuss 

profit .i.e. to. relax a), b) and c) ) simultaneously; 

(2) to present a solution procedure to optimization ) 

problem 2 given in KUMAR and LAL [8]. 

This problem to be determine optimal maintenance 

policy (maximized profit) in each state for a standby 

system. 

     

      As our objective is not in the direction of complicating 

system configuration, but it is to show the feasibility of profit 

evaluation of a standby system under the most generalized cost 

structure, we take a usual 2-unit cold standby system for the 

purpose of analysis. We divide the paper in the following two 

parts : 

 

Part I: Profit of the system. 

Part II:  Optimal maintenance policy for the system. 

 

In part I: we superimpose the most generalized reward 

structure (HowARD [4]) on the standby system and develop 

profit equations under the generalized set-up. The equations are 

solved for a particular case when the earning rate in a state is a 

function of the present state and the future state of visit and is 

independent of time and transition rewards are also constant. 

Part II deals with determining an optimal maintenance policy 

for the system in each state that maximizes the expected profit 

rate of the system. We again make use of HOWARD'S Policy 

Iteration [4]. 

 

Part 1: Profit of the system  

 

The standby system  

1. There is a 2-unit cold standby redundant system ; units are 

identical.  

2. The failure-time distribution of the operative unit is 

exponential with rate 2 and the repair-time is general, say 

g(t).  

3. The system states and transitions between them are 

 

So: One unit is operative, the other is as standby; (can go to 

S1)  

Si : One unit is under repair, the other is operative; (can go 

to So or S2).  

S2: One unit is under repair, the other waits for repair; (can 

go to Si).  

 

The system is up in So — Si, and it is down in S2. The 

process generated by the system model is semi-lVIARKov 

(BRANs0N and SHAH Pi, KUMAR [6, 7]).  

 

II. THE GENERALIZED REWARD structure  

 

a. While the system occupies Si having chosen a 

successor state Si, it earns reward at a rate yid (a') at a 

time after entering Si. This is the yield rate of Si at 

time a when the successor state is Si. 

b. When the transition from Si to Si is actually made at 

some time -t, the process earns a bonus bii(-r), a fixed 

sum.  

c. The discounting rate is exponential with rate a, i.e. a 

unit sum of money at time t in the future has a worth 

or present value e-at today, a≥0. 

 

III. NOTATIONS  

vi(t, α): the expected present value of the reward the process 

will generate in a time interval of length t if it is placed in Si at 

the beginning of this interval. 

 

 vi(0) : the additional fixed payment if the system occupies Sj 

at the end of the interval taken in v2 (t, α). 

 

 pij: the one-step transition probability from Si to S1.  

 

hij(t): the holding-time probability distribution function of the 

system in Si before making a transition to Si. 

 

hij(t) = ijhij(t). 

  

 

f*(s) denotes the LA_PLACE transform of a function 

evaluated at s, e.g. f*(s) = -st f(t)dt. 

  

f ... implies f unless stated otherwise. 

 

- denotes the complement, e.g. fit) = 1 — f(t) 

 

Hij(i) : the capital letters in general stand for the continuous 

distribution function of the corresponding lower case  

e.g. Hij(t) = ij(t)dt. 

 

 

IV. SYSTEM PROFIT EQUATIONS  

 

It has been shown in HOWARD [4] that for any state Si,  

 
where  
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Taking the LAPLACE transform of (1)—(3) and writing in 

matrix notation one obtains 

 

 
 

where double bar below a letter stands for matrix and single 

bar (—) denotes vector and r] denotes box opera. tion,  

e.g. if 

A=((aij)),  B=((bij)),  

 
In order to write profit equations for the model under 

consideration, let us write there quired parameters fo.r, the 

model. The following parameters can be obtained directly from 

BRANSON and SHAH [1] or KUMAR [6, 7] as this model is 

a special case of these models. 

 
 

where y is the remaining repair time of the unit which was under 

repair at the instant when 82 is entered. Substituting the 

required values into (2)—(3) from (5), one gets 

 

 

 
Where, 

 
Now all thequantities required in (1) or (4) are available. 

They can be substituted and the discounted profit can be 

obtained when the system starts in any of the states So, Si and 

S2. We below consider a particular case and discuss in detail 

profit evaluation. 

  

V. A PARTICULAR REWARD STRUCTURE  

To illustrate the computation procedure let us consider the 

case of constant yield rates and bonuses as below 

Yij( )=yij, bij( )=bij. 

Then  

 
S0, (6)—(11) reduce to 

 

 

 
 

Substituting of (15) —(20) into (4), one gets the elements of 

the expected profit vector v*(8, a) as below 

 

 
Limiting behaviour of expected profit From the final value 

theorem one knows 
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 Then it easily follows that 

 
 

It implies the set of simultaneous equations 

 

 
 

For the particular case when yield rate and bonuses are 

constant, we get 

 
Therefore, if one is interested in long term profit viz., the 

expected present values vi(a) of the entering state Si iii a 

system that will continue indefinitely, the following steps are 

straight forward : 

a. Define the system states. Identify the system as up or 

down in each state. State transitions between dif-ferent 

states. 

b. write transition probabilities, holding time probability 

distribution functions, yield rates along with transition 

rewards and discounting rate. Compute LAPLACE 

transforms of holding time probability distributia 

functions evaluated at the point s = a, the discounting 

rate. 

c. Compute ri(A) using (28) or (29) for each state Si and 

substitute in (27) to get a set of simultaneous 729 tic 

tions describing profit. The number of equations is 

equal to the number of states.  

For the particular case under discussion we have 

 
Part, 11: Optimal maintenance policy for the system  

 

In the maintenance of equipments, one is often faced with 

the problem of choosing an optimal alternative ernative from a 

given set of alternatives. More elaborately, to maintain a 

system, there may be several maintenance schemes available to 

a decision maker e.g. ordinary maintenance (OM), costly 

maintenance (CM) and highly expensive main-tenance (HEM). 

Last policy viz. HEM may involve large expenditure but 

ensures a higher value for operating time of the system or 

mean-time-to-system failure, as compared to other policies. 

One may be interested in selecting the policy (one alternative 

from each state) that maximizes the expected profit in long run.  

 

In this part we give a general formulation for a semi-

MARKov decision process applicable to any standby 

redundant system. To determine the optimal operating (or 

maintenance) policy for the system we apply HOWARD's 

Policy Iteration [4]. To get an insight into the formulation 

aspect of maintenance policies let us concentrate on the 

following discussion:  

 

When a standby redundant system is operating, there may 

be several options available; OM, CM and HEM etc. While a 

unit of the system is under repair, there may again be different 

alternatives viz., ordinary repair (OR), costly repair (CR), 

highly expensive repair (HER) etc. In general in each state of 

the standby system, there may be several operating alternatives 

available to a decision maker and the problem is to choose one 

alternative in each state keeping in view some effectiveness 

criterion viz., choose the alternative that maximizes long term 

profit rate of the system or minimizes long term cost rate of the 

system. Before presenting formal description, we state the 

following assumptions:  

a) The earning rate of the system in each state is constant, 

that is, it neither depends on the future state of visit nor on time  

and. 

b) whenever, the system changes its state, fixed transition 

rewards are involved; 

c) there is no discounting. 

 

VI. SEMI-MARKOV DECISION PROCESS  

Suppose when the system is in S i, there are various 

alternatives for its operation. Associated with each alternative 

Su  say k, in Si, there are process parameters: transition 

probabilities (29,.i), holding-time probability distribution 

func-tions (./11,)(t), earning rate (or loosing rate) (y,) and 

transition rewards (or costs) (r,16). We assume a finite but 

different number of alternatives in each state. The problem is 

to choose one alternative in each state which may be called_ a 

decision and the set of decisions (one in each state) may be 

called a policy. We have to find the policy that maxi-inizc8 

the, average profit of the system in steady-state.  

 

 

VII. NOTATIONS 

 

i : subscripts to denote system states : 1, 2, , n 
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vi(t) : total profit we expect the system to earn in time t, if the 

system starts in Si at time t = 0; 

yi  : earning rate of the system in Si when alternative k is 

selected ; 

rij ; the system goes from Si to SI and in Si, alternative fixed 

transition reward when the system goes from si to sj and in si , 

alternateive k was selected ; 

g : expected profit of the system per unit time in steady-state.  

Then following HowAith [4] we know that for large t,  

 

Vi(t) =  vi + gt 

 

where v, is the transient part 0/ the profit and y is the 

steady-state part, and,  

where 

 
The steps involved in the policy iteration procedure are:  

step: Define the standby redundant system i.e. its state 

space and transitions between them. Identify up me rate 

alternative operating rates in each state. Specify earning rate, 

repair and down states of the system. 141.4niii cost rate, fixed 

transit ', ion rewards etc. 

Step 2: Compute the transition probabilities and the holding 

time probability distribution functions,  

Step 3: Choose one decision in each state i.e. the present 

policy for which 

 
is maximum.  

Step 4: For the policy in step 3 solve the set of it equations 

     for all i=1,2,….,n 

For v1, v2, ……v n-1 and g by setting vn=0 . 

Step 5: Using the values of v1, and obtained at step 4 

compute the test quantity 

 
for each alternative in each state. Choose the alternative in 

each state for which the test quantity is maximum. Step 6: 

Examine if the new policy is different from the initial policy. 

If yes, go to step 4; otherwise the opti• mal policy is reached. 

  

VIII. APPLICATION TO A STANDBY SYSTEM WITH EXPONENTIAL 

FAILURE AND EXPONENTIAL REPAIR TIME DISTRIBUTIONS  

 

Denote by : A the failure rate of the system, 77 the repair 

rate of the failed unit, 'om' the ordinary maintenance, 'or'the► 

ordinary repair ; 'cm' the costly maintenance, 'cr' the costly 

repair.  

The following table gives the detailed description of 

various system parameters:  

 

Decisions in different states: 

 In S0, — 1 : om, 2 : cm. 

       In S1 — 1 : (om, or), 2 : (om, cr), 3 : (cm, or), 4 : (cm, cr).  

       In S2, — 1 : or; 2 : cr. 

 

So, the initial policy is  and policy equations are 

 
which gives the solution as  

 

vo = 1496.00 , v1 = 1001.0 , v2=0,  g=75.00 

 

First policy iterationwe  

Using above values of v0,v1,v2 and g we compute the value of 

test quantityy (TQ) 

 
In each state. 

 

So, the improved policy is  and policy equations are 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume3, Issue 2 (Mar-Apr 2015), PP. 272-277 

277 | P a g e  

 

 
and the solution is v0,=999, v1, = 666, v2, = 0, g = 83.10.  

we observe that value of g has been improved from 75 to 

83.10. Again we compute T.Q. values in each state. 

 

So, the improved policy is  and policy equations are 

 
and the solution is v, = 999, v1 = 666, v2 = 0 and g = 83.10. 1 

) ( This policy is the same as obtained in the previous 

iteration, hence the optimal policy is reached and is   

 

Concluding remarks 

 We have developed profit equations for a 2-unit standby 

redundant system under a generalized cost structure. The 

procedure can be applied to compute profit in any standby 

redundant system. However, as the size of the state space 

increases, the equations are quite complex and tedious. Under 

such circumstances it will be desirable to develope computer 

programmes for the purpose. Further, the optimal maintenance 

policy has been discussed for a simple 2-unit standby system 

for illustration but the procedure could easily be applied to 

other standby systems with exponentail failure-time and 

general repair-time distributions. To determine optimal 

rnaintenance4)olicy, computer algorithms will serve a useful 

purpose for system designers and maintenance engineers. 
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