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Abstract — In this work we investigate the geodetic 

motion with rotational momentum in the Kaluza Klein 

theory with minimally coupled gravitational and 

electromagnetic fields. We find that the orbits follow 

generalized Kepler ellipses, where these orbits undergo a 

rotation of the perihelion and the ellipses are disturbed by 

an additional wobbel motion in the radial direction. This 

disturbance is caused by a rotational potential that 

becomes gravitationally active. When the masses of the 

particles envolved is increased, this rotational potential 

can amplify to a potential barrier that devides the orbit 

into a confined inner orbit and an outer orbit. When we 

apply these findings to micro physics, the generalized 

Kepler ellipses describe the electro magnetic interaction 

force, whereas the cases with increased masses organically 

belong to the electro strong and electro weak interaction 

forces. In the case of the electro magnetic interaction force 

we can look for ideal circular orbits. We find that discrete 

orbits of such kind exist and that they coincide with Bohr’s 

circular orbits in the atom. Quite naturally, from these 

findings a numerical procedure can be defined in order to 

determine the Planck constant numerically, which is the 

constant increment in rotational momentum between 

adjacent circular orbits. In order that such a constant 

increment exists, which guarantees the stability of the 

atom, none of the other natural constants can have a 

deviating value to the value taken from the measurements. 

Index Terms — particle motion, rotational momentum, 

gravitational and electromagnetic fields. 

I.INTRODUCTION 

In the work "Space travel of charged test particles hitting 

the singularity of a charged central gravitational center", by 

J.M.Schmidt, published in the International Journal of 

Technical Research and Applications (IJTRA), vol. 4, issue 6, 

November-December 2016, the Kaluza-Klein theory for 

minimally and non-minimally coupled gravitational and 

electromagnetic fields was worked out and solved for the 

spherically symmetric case. The corresponding geodetic 

equations for the particle motion were established for this 

spherically symmetric case and solved for the minimally 

coupled gravitational and electromagnetic fields in the case that 

the orbiting particle has no rotational momentum. Here, we 

want to investigate the particle motion in the case with 

spherical symmetric and minimally coupled gravitational and 

electromagnetic fields further, when the orbiting particle has a 

non vanishing rotational momentum. This motion is closely 

linked with Planck’s constant  , and we have to expand on this 

relation briefly. 

 

II. REMARKS ON PLANCK’S CONSTANT 

 

Planck’s constant h is considered as one of the most 

fundamental constants in nature, and the whole branch of 

quantum mechanics is built on it. The constant was first found 

by Max Planck at the beginning of the 20th century as the 

constant amount of energy per frequency photons carried away 

when they are emmitted by a radiating ideal black body. Later 

on, Niels Bohr speculated that electrons in an atom can only 

propagate along circular trajectories around the nucleus of the 

atom, where the rotational momentum of the electron is an 

integer multiple of the Planck constant, thus explaining the line 

spectrum of the hydrogen. Although later the atom was tackled 

as a system in which the electrons are statistically fluctuating 

entities that have to be described with a probability distribution 

function, the so-called wave function, it was still assumed that 

the energy per frequency is released in packages of size h, and   

is the energy operator in the equation that governs the wave 

function, which retrieves the energy from the wave function as 

an eigen value. As a consequence, the absolute squares of the 

wave functions in a hydrogen atom have still maxima at the 

locations of the Bohr orbits. This means that the whole edifice 

of quantum mechanics still rests on Bohr’s fundamental 

assumptions with descrete orbits, determined by h. The 

mysterious thing is that in classical mechanics an electron can 

orbit a proton on a circular trajectory with any rotational 

momentum. So nobody knows where the restriction is coming 

from. Thus, h appears to be a constant that determines the 
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whole building of quantum mechanics, but has no correlations 

to any other mechanisms of which nature is constructed. 

In this article we modify Bohr’s approach by treating the 

orbiting electron-proton system as a general relativistic system 

and not as a system of classical mechanics. Since masses and 

charges are involved in such a system, the appropriate 

gravitational theory is the Kaluza-Klein theory, in which the 

gravitational and electromagnetic fields are minimally coupled 

(non-minimally coupled fields can play a role, but we can 

consider this influence as second order). In this theory, the 

trajectories of the electron are also in an ecliptic plane, and the 

motion of the electron is determined with an effective potential, 

which incorporates a gravitationally active rotational 

momentum of the orbiting electron. This gravitationally active 

rotational momentum is repulsive, if the electron approaches 

the proton, and attractive, when the electron leaves the proton. 

This has as a consequence that the trajectory of the electron 

around the proton has a wobble motion on top of it, which 

makes the trajectory to deviate from an ideal circular or elliptic 

orbit. Only in special balanced cases we get ideal circular 

orbits, also in the general relativistic theory. It can be shown 

that these ideal circular orbits of the relativistic theory coincide 

with the Bohr trajectories with a high degree of precision. 

Thus, the dynamics of the general relativistic system explain 

the restrictions on the trajectories of electrons orbiting a proton, 

which are needed to produce coherent emmission, and which 

are characterized with the Planck constant. Or in other words, 

the Planck constant is a consequence of the general relativistic 

laws. This result puts the edifice of quantum mechanics on 

solid ground. We not only understand where the Planck 

constant is coming from, we are also able to derive its 

numerical value from theory. 

 

III. THE TECHNICAL APPROACH 

 

The technical approach to this problem is as follows. We 

first derive the effective or pseudo potential, which controls the 

general relativistic motion of electrons around protons. We 

then integrate the equation of motion in order to arrive at 

generalized Kepler ellipses, which can be expressed in terms of 

elliptic functions, and which incorporate the wobble motion I 

was talking about earlier. This derivation is a bit lengthy, but I 

chose a step by step approach so that anybody who follows that 

calculation does not stumble at a specific step, since he cannot 

find the link that leads to the following step. It is a good 

exercise for anybody who wishes to use elliptic integrals in his 

investigations. Moreover, having the shapes of the orbits in 

analytic form is as useful as having the Kepler ellipses in 

Kepler’s time, since only then it was understood how our solar 

system really looks like. And these formula can be used in any 

further investigations of general relativistic motions of particles 

around central bodies. 

The nice thing about the pseudo potential of a general 

relativistic particle orbiting a central particle is that it is a 

polynominal of fourth order in the inverse central distance 

coordinate. Thus, it has four roots, and the physical cases are 

those where either all roots are real or at least one pair of the 

four roots are real. Two neighbouring roots determine the 

aphelion and perihelon of an orbit. So if these two roots are 

close to each other or coincide, then the trajectory is close to or 

a circle. In order to find energy and rotational momentum 

parameters that belong to circular orbits, all we need to do is to 

insert these parameters into the pseudo potential and to look if 

two of the real roots of the corresponding polynominal of 

fourth order are close to each other or coincide. If the roots are 

not close to each other or coincide, we need to further fine-tune 

the energy and rotational momentum parameters as long until 

they do. Here, we use a shortcut of this method. Since we want 

to verify that the Bohr values for energy and rotational 

momentum of a Bohr trajectory also lead to a circular orbit in 

the general relativistic case, we take the Bohr values for energy 

and rotational momentum of the n-th Bohr trajectory as an 

estimate for the values for energy and rotational momentum in 

the general relativistic case and see that with these values the 

two roots of the pseudo potential are very close to each other. I 

have demonstrated this for the 1st, 2nd and 3rd of Bohr’s 

orbits. This looks as if one takes information about the Planck 

constant, which flows into the estimates, in order to gain 

information about the Planck constant. So is here a flaw in our 

argumentation? No, it isn’t, since the estimates are simple 

numerical numbers that could have been gained by any 

reasoning. The crucial thing is the selection criterion, if the 

roots coincide. This is an entirely numerical experiment 

independent from the Planck constant. What is lacking is that 

one should convince oneself that if one chooses energy and 

rotational momentum parameters deviating from the estimates 

that one then also obtains roots that are not so close to each 

other. This one can do extensively (and I have done that). 

Secondly, one has to do the verification for the 3rd, 4th,   of 

Bohr’s orbits. I have done this, too, but haven’t incorporated it 

in this manuscript. This discussion would have blown up an 

already extensive manuscript. Yet, I encourage everybody to 

launch his own investigations. What one finds is that the 

coincidence of the roots becomes less prominent the higher the 

quantum number n is. This is no surprise, since in the end our 

theory is just a model that has assumptions in it (e.g., perfect 

spherical symmetry, linear coupling between the fields, etc.). 

There is a further implication of this study. The pseudo 

potential depends on the masses and the charges of the electron 

and the proton, and the coupling constants of the fields, next to 

the energy and the rotational momentum parameter. If one 

changes one of the mass or charge parameters of the electron or 

proton, or one changes one of the coupling constants of the 

fields, then the corresponding pseudo potential determines 

circular orbits that do not have a ladder spectrum of equidistant 

rotational momentum values. An atom with such dimensions 

would not be able to emit coherent emmission, and was 

therefore virtually undetectable or non-existing. Only a system, 

where the mass and charge values for the electron and the 

proton and the coupling constants of the fields have the 

measured values realized in nature, develops a ladder spectrum 

with equidistant values of the rotational momentum of its 

circular trajectories, and is visible and stable. So the laws that 

the proton mass is 1836 times the electron mass and the charge 

of the proton is opposite to the charge of the electron are 

consequences of the general relativistic laws, too. 
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IV. MOTION WITH ROTATIONAL MOMENTUM 

 

A. Introductory Remarks 

 

Kaluza-Klein’s theory with minimally coupled fields is a 

theory in which the gravitational field is coupled linearly with 

the electromagnetic field. The formulation of this theory 

follows the concept of Einstein to describe forces in a 

geometrical manner via metric fields that vary depending on 

the relative motion of the observer and the object. Despite the 

possibility of a nonlinear coupling between the gravitational 

and the electromagnetic field, which can be described in a 

Kaluza-Klein theory with nonlinear coupling, the Kaluza-Klein 

theory with minimal coupling is the simplest theory that unifies 

gravitation and electromagnetism. Because of its relative 

simplicity, the motion of charged particles can be described in 

great analytic detail in this theory. Like Newton, who 

calculated the motion of the planets exactly, which gave us 

deep insight in celestrial dynamics, such analytic studies can 

give us insight in general relativistic effects that alter the 

classical dynamics of particles, when the gravitational forces 

become quite strong. An example for such a system is an 

elementary particle that propagates in the vicinity of the center 

of the nucleus of an atom, since both, the gravitational as well 

as the electromagnetic field have a singularity at that center. 

This work is intended to derive the equivalent of Kepler’s 

ellipses in Kaluza-Klein’s theory with minimal coupling. Such 

generalized ellipses can be described in terms of elliptical 

functions. We will give this derivation in great detail, since it is 

a good exercise to improve our integration capabilities. 

Furthermore, this approach will show that the investigation can 

easily be extended in different directions. Thus, this work is 

also intended to encourage such further investigations. The 

work is not intended to be complete. 

 

B. The Equations of Motion. 

 

The geodetic eqations for the motion of a charged 

particle in Einstein-Maxwell’s theory for the spherically 

symmetric case read 1:  

  =0qAtce    (1) 
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 Here, r ,   and   are sperical coordinates and t  is the 

coordinate time. The dot denotes the differentiation with 

respect to the “Eigen”-time   of the propagating particle, 

where we use the convention 
222 = dcds   between the 

line-element ds  and the “Eigen”-time, and c  is the light-

velocity. Thus, equation (4) is the definition of the line-

                                                           

 

element, which turns out to be one of the geodetic equations. 

The functions 
e  and 

e  are the metric fields in a rotational 

symmetric stationary metric. For the Reißner-Nordström 

solution we have 
2
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is Schwarzschild’s radius with 
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, M  is the mass 

of the central body, 
NG  is Newton’s gravitational constant, 

4
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=

c

GN
  is the coupling-constant between the 

gravitational and the electromagnetic field, 

04
=
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Q
k , Q  is 

the charge of the central body, and 0  is the dielectric 

constant. Equation (1) is a generalized “energy”-law, where 

cm

e
q

e

= , e  and em  are the charge and the mass of the 

orbiting particle, 
cm

E

e

=  is the total energy of the orbiting 

particle, normalized to cme , and 
r

k
A =0  is the Coulomb-

potential of the central body, which is the zero-component of 

the vector-potential. Equation (2) is the conservation-law of 

the rotational momentum like in the classical case, where 

em

l
=  is the rotational momentum that is normalized to the 

mass of the orbiting particle. Equation (3) fixes the  -

coordinate, e.g. the motion of the particle is within the ecliptic 

plane. 

Since there is a radial varying metric component 
e  

in the energy-equation, the rotational momentum of the 

orbiting particle is “out of phase” with the motion of the orbit, 

if we compare the motion with the classical motion. This leads 

to an additional potential-well for the orbiting particle, when it 

approaches the gravitational center, which distorts the 

classical motion. This effect can become so prominent, that a 

further approach of the center is completely violated. In that 

case, the well is also repulsive for a particle within the well 

that can not escape the vicinity of the nucleus. This effect 

nicely corresponds to the experimental effect of 

“confinement” of elementary particles that are influenced by 

the  

“strong interaction”. Apparently, the “strong 

interaction” is a general relativistic effect for closely orbiting 

elementary particles with  

strongly interacting gravitational and electromagnetic 

fields. 

For an elementary particle like the proton, the 

Reißner-Nordström metric has no event horizons. An orbiting 

particle can get as close to the gravitational center as it is 
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possible. In extreme cases, e.g. if the rotational momentum is 

zero or close to zero, the orbiting particle can move 

straightforwardly into the singularity at the gravitational 

center. Yet, since the equations of motion are smooth, the 

particle is not repulsed at the central singularity. Instead, it 

tunnels right through the singularity. In mathematical terms, it 

moves from the space with positive radial coordinate r  into 

the space with  negative radial coordinate r . As we see from 

the definition of the Coulomb-potential in the equation of 

motion which is proportional to r1/  and proportional to e , 

the charge of the particle, a switch to negative r  corresponds 

to a switch to a particle with positive r -coordinate, but with 

the  opposite charge. I.e. the elementary particle transforms to 

its anti-particle, when it crosses the central singularity. If we 

look at the energy-equation (1), we see, that a change of the 

sign of the term 0qA  has a change of sign of the term t  as its 

consequence, since the term 
21/r  in 

e  is dominant close to 

the singularity, which does not change its sign, and   is a 

constant. This means that the particle propagates  backwards 

in time, as soon as it transforms to its anti-particle. Since all 

orbits are periodic, the anti-particle returns to the singularity 

after it has traveled backwards in time for a while. When it 

hits the singularity again, it transforms to the former 

elementary particle and leaves the singularity as if it has been 

repulsed. Yet, from the point on that it has become the former 

elementary particle again, it propagates forwards in time 

again. It reappears  before it has actually hit the singularity in 

the process beforehand. The time-span between the moment of 

reappearance and the time when the particle hits the 

singularity first is exactly the absolute value of the time-span 

that it propagated backwards in time as an anti-particle. Thus, 

the falling particle and the reappeared particle are also 

spatially separated. This process can also be described as if a 

particle interacts with a particle anti-particle pair that it hits 

out of “Dirac’s ocean”. Yet, in the general relativistic picture 

the three particles are related by general relativistic laws. The 

replacement of the same particle in time and space due to the 

effect that has been described could be the explanation for the 

fact that we actually see the fluctuation of elementary particles 

in microphysics that leads to the quantum-mechanical 

behaviour of nature. The linkage of these fluctuations with 

general relativistic propagation-laws could be the reason for 

the fact that these observed fluctuations follow the law of 

Heisenberg’s uncertainty equation. We have expanded on 

these facts in Schmidt (2016). 

 

a) The Pseudo-potential for the Motion of the Particle 

 

We take t  from equation (1),   from equation (2) 

and   form equation (3) and substitute them into equation 

(4). This yields  
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 in this equation can be looked at as an energy- and rotational 

momentum depending “pseudo-potential” for a motion of a 

particle at coordinate u  with the parameter of the motion  . 

For the Reißner-Nordström solution and the Coulomb-

potential we get  
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 Here, the integration constant 0  has no physical meaning. 

That constant corresponds to an arbibrary rotation within the 

ecliptic plane. The difficult bit is to proceed with the 

integration further. We will address this problem in the next 

two sections. 

 

b) Integration in the Case of a Parabola-like Pseudo-  

potential  

c) We look at the case that the pseudo-potential has the 

form  
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  22
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2

0

2

1
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0

2
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1

2
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=][ 2

0

2

1
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1

22

0 )()( uu   

2

0

2

1

2 uu  )(2= 01 uu   
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)]()([ 2

1

2

0

2

0

2

1 uAuuBu  ))((= 22

01  uu  

 Thus  

 2

01 )]()[( AuBuuAB '

))(]()()[( 01
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01 uuuuBAuu '' 

 22

01 )(= 'uuu  'uuuuu ))((2 0101  

))()(( 22

0101   uuuu

]2[)(= 2222

01   '' uuuu  

])[()(= 222

01   'uuu  

 We can substitute the last two simplified polynomials into the 

original expression. This yields  

=))(1(1 222 '' xKx   



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2
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2
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'

'
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
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=
))(1(1

1

222 '' xKx 
  

 
2

01 )]()[(= AuBuuAB '   

 )]()1)(/[( 01 AuBuuBA '   

 
22

01 )()//(   'uuu  

 If we combine this with the expression for the differential 
'dx , we get  

 =
))(1(1

1

222 ''

'

xKxAB

dx


  
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 011)(

1
=

uuuu ''
 

 )( 01 uu   

 )]()1)(([ 01 AuBuuAB '   

 
2

01 )]()([/ AuBuuAB '   

  'du  

 
2

01 )]()([ AuBuuAB '   

 )]()1)(([/ 01 AuBuuBA '   

 )(/ 01 uu   
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1
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'
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=
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'

uuuuu

du
 

 We can integrate this equation:  
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1
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'
x
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   
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=
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'
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 where we used equation (17). On the other hand it is  

 

),,(J=
))(1(1

1

222
KxacobiSN

xKx

dx

''

'
x




  

 where ),(J 1 KxacobiSN
 is the inverse function of the 

elliptical Jacobi function  

),(J KxacobiSN .  
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1
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1    aKxacobiSN
AB

 

 

)(=),(J 01

1    ABaKxacobiSN  

 

),),((J= 01 KABaacobiSNx    

 when we apply the operation )(*,J KacobiSN  on the 

second equation. Between the elliptical function 

),(J KyacobiSN  and the elliptical function 

),(J KyacobiCN  there is the relation  

 .),(J1=),(J 2 KyacobiSNKyacobiCN 

 (23) 

 Thus  

=1 2x )),((J1 01

2 KABaacobiSN    

)),((J= 01 KABaacobiCN    

 Now, we can use our original relation (19), and with ru 1/=  

we get  

 )()((=)( ABABr   

))),((J 01 KABaacobiCN    

 )()/(( 0101 AuBuAuBu  

))),((J 01 KABaacobiCN    (24) 

 Equation (24) is the exact solution of the trajectory of the 

particle in the ecliptic r - -plane in terms of elliptic 

functions. We realize that the Jacobi function 

)(*,J KacobiCN  is a function close to the trigonometric 

cosine function, although the Jacobi function has a modified 

periodicity, with accounts for the rotation of the perihelion for 

that general relativistic orbit. Thus, equation (24) is quite close 

to a Kepler ellipse, which has the form ))(cos/(1 P , 

where   is the excentricity and P  a trajectory parameter. 

The difference is that in equation (24) P  is also a periodic 

function of the Jacobi function. This generates the wobble 

motion of the orbiting particle on top of the motion along the 

ellipse. This wobble motion is suppressed only, when 

)( AB  tends to zero. In this case 0u  and 1u  coincide and 

we have a perfect circular motion. We will show that these 

perfect circular motions are realized in the hydrogen atom and 

are identical with Bohr’s orbits. 

 

d) Integration in the Case of a Potential Well that Separates 

an Outer Orbit from a Confined Inner Orbit 

 

In this case the pseudo-potential can be written as  

=),,(
1

p

1

uV
a

seudo ).)()()(( 0123 uuuuuuuu   (25) 

 In the case that the roots of ),,(p uV seudo  are real and 

ordered, i.e. 3210 <<< uuuu , the orbit ];[ 10 uuu  

belongs to the outer orbit and the orbit ];[ 32 uuu  belongs 

to the confined inner orbit (recall that we have ru 1/= , i.e. a 

large border-value iu  belongs to an actual small radial 

distance ir  and vice versa). Yet, we note that the calculation 

that follows is general and doesn’t depend on the requirement 

that the roots are real or ordered. Thus, we can relabel the 

roots at the end of the calculation as we like in our solution. 

This can be used to obtain the solution for the confined inner 

orbit, if we have derived the solution for the outer orbit. 

We define the modulus  

))((

))((
=

0213

0123

uuuu

uuuu
K




 (26) 

 and look at the function  

2
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2

013130
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=

'

'
'

xuuuu

xuuuuuu
u


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 (27) 

 From this we get  
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 On the other hand we have  
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 For the numerator in this expression we get  
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=))(1(1 222 '' xKx 
2

30201

21

2

03

))()((

))(()(

uuuuuu

uuuuuu
'

''




 

  

=
))(1(1

1

222 '' xKx 


21

2

03

2

30201

)(

)(

uuuuuu

uuuuuu

''

'




 

 If we multiply this equation with equation (29), we get  
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 Now, we can integrate equation (30). This yields  
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 according to equation (17). On the other hand we have  
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 Now, we look at our original function (27), and with 

ru 1/= , we have  
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 The expression (31) is the exact trajectory of the particle in 

the ecliptic r - -plane in the case of the motion with a 

repulsive potential well in terms of elliptic functions. Since 
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[0;1]),(J KyacobiSN , (31) describes the motion for 

];1/[1/ 01 uur , i.e. it is the expression for the outer orbit. 

In order to get the solution for the inner confined 

orbit, we need to exchange the two potential hills, where the 

motion is possible, i.e. we need to exchange 
20 uu   and 

31 uu  . This yields  

 )((=)( 23 uur   

 ))(((J 02131

2 uuuuaacobiSN  




 ),
2

)( 0 K


))( 13 uu   )(/( 231 uuu  

 ))(((J 02131

2 uuuuaacobiSN  




 ),
2

)( 0 K


))( 132 uuu   (32) 

 as exact solution for the inner confined orbit. The modulus 

K  remains unchanged by this exchange-operation. It is clear 

that the inner confined orbit describes the electro-strong 

interaction between quarks. We come in this regime of the 

interaction, when we moderately diminish the charge of the 

particles, and increase the masses significantly. The potential 

well between the inner and outer orbit is a consequence of 

increasing the general relativistic effects. The particle on the 

inner orbit of another particle can have a third particle orbiting 

on its own inner orbit. Finally, the third particle can have the 

first particle on its inner orbit. Thus, we see that naturally 

three particles cluster together to form an entity. These are the 

nucleons that consist of three quarks each. Since each of the 

quarks in a nucleon has an outer orbit, too, another nucleon 

can be associated by saturating those bounds. This is clearly 

the electro-weak interaction that makes nucleons cluster 

together in atoms. 

 

e) Investigation of Particle Motion at Bohr’s Ground Level 

in the Hydrogen Atom with low Angular Momentum 

 

In this section we will apply our findings about the 

general relativistic motion of a particle around a central 

particle to an electron that orbits a central proton. We will see 

that we can explain a number of properties of the hydrogen 

atom like the occurrance of Planck’s constant and its multiples 

as the angular momentum of electrons on most stable orbits. 

As basic means for this numerical investigation, the 

following REDUCE computer algebra program can be used. I 

will give detailed comments on that program after its listing in 

the text. 

on rounded;  

precision 20;  

G_N := 6.672e-11;  

c := 2.997925e8;  

kappa_2 := 8 * pi * G_N / c**4;  

e_el := 1.6022e-19;  

Q_large := e_el;  

epsilon_0 := 8.8542e-12;  

k := Q_large / ( 4 * pi * epsilon_0 );  

a_1 := kappa_2 * k**2 / 2;  

M_N := 1.6726e-27;  

m := M_N * G_N / c**2;  

m_e := 9.1095e-31;  

q := - e_el / ( m_e * c );  

h := 6.6262e-34;  

n := 1;  

r := epsilon_0 * h**2 /  

( pi * e_el**2 * m_e ) * n**2;  

v := e_el**2 / ( 2 * epsilon_0 * h )  

* 1 / n;  

fac_1 := 1;  

alpha := r * v /  

sqrt( 1 - ( v / c )**2 ) * fac_1;  

fac_2 := 1;  

beta := ( m_e * c**2 /  

sqrt( 1 - ( v / c )**2 ) -  

e_el * Q_large /  

( 4 * pi * epsilon_0 ) / r ) /  

( m_e * c ) * fac_2;  

a_bar := - 2 * m / a_1;  

b_bar := ( alpha**2 + a_1 * c**2 -  

q**2 * k**2 ) / ( a_1 * alpha**2 );  

c_bar := 2 * ( beta * q * k -  

m * c**2 ) / ( a_1 * alpha**2 );  

d_bar := ( c**2 - beta**2 ) /  

( a_1 * alpha**2 );  

poly := u**4 + a_bar * u**3 +  

b_bar * u**2 + c_bar * u + d_bar;  

roots(poly);  

u0 := rhs(third(roots(poly)));  

u1 := rhs(first(reverse(roots(poly))));  

u2 := rhs(first(roots(poly)));  

u3 := rhs(second(roots(poly)));  

mu:=(u2+u3)/2;  

nu:=(u2-u3)*(-i)/2;  

end;  

The structure of the REDUCE program is rather 

simple. We first calculate the coefficients of ),,(p uV seudo  

1a , a , b , c  and d  as we have defined them in the theory 

section for the masses and charges of an electron and a proton. 

Since we perform a numerical study, we need to insert the 

measured values for the other natural constants, too. A little 

bit tricky is the estimate of the energy and the angular 

momentum parameters   and  . For   we set  

).
1

4
)(1

(
1

02

2

r

eQ

c

v

cm

cm

e

e 
 



  (33) 

 This means that we estimate the energy of the orbiting 

electron by the sum of its special relativistic kinetic energy, 

which is its dynamical mass 
22 )/(1/ cvcme  , and its 

Coulomb-energy in the electric field of the proton. On the 

other hand we estimate   by  
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


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 where we used equation (2) and the special relativistic time 

dilation relation 
2)/(1= cvdtd  . For r  we take Bohr’s 

radii 
222

0 )/(= nmehr en  , where n  is the main quantum 

number of the energy levels in the hydrogen atom and h  is 

Planck’s constant. For v  we take the corresponding estimates 

of the electron velocities in Bohr’s model of the atom 

)/(2= 0

2 hnevn  . Note that despite the fact that 
nr  depends 

on 
2h  in our formula, 

2h  can be expressed by the energy of 

the corresponding level in the atom. Thus, 
nr  does not really 

depend on 
2h . Yet, h  determines the rotational momentum 

of the electron via the quantization condition 

nhvmr nen =2 , and this is the way how h  has been 

introduced to micro physics by Niels Bohr historically. This 

basically means that we have emn /=  , i.e.   is a 

multiple of )/(2= h , normalized to the electron mass. 

Next, we calculate all the constants needed for the 

ground state of the hydrogen atom, i.e. for 1=n . In SI-units 

we get the following numerical values: 
432 102.07593066=  , 

9101.43998357= k ,  
54101.24167118= m , 

2105.86680189= q , 

11

B 105.29176489== ohrrr , 
6102.18770919= v , 

4101.15771509=  , 
8102.99784518=  , 

61

1 102.15227578= a , 
7101.15382164= a ,  

60104.64599732= b , 
71101.75588816= c  and 

81101.65903443= d . 

In order to calculate the four roots of our polynomial 

of degree four ),,(p uV seudo , we use the root-solver 

“roots(*)” of REDUCE. The result for the ground state is  

 
10

0 10545902971451.88962806= u  

 
10

1 10235231981621.88972870= u  

 
1010832363732561.88910147=   

 

,10575873152252.15545756= 30  

 i.e. there are two complex conjugate roots and the motion is 

only between 0u  and 1u . For the aphelion we get 

=1/= 00 ur   

11105.29204672   m. For the perihelion we get 
11

11 105.29176489=1/= ur  m, whitch is identical with 

Bohr’s radius. The coordinate of the aphelion is only slightly 

larger than Bohr’s radius. Thus, we get almost a circular 

trajectory of the electron around the proton. If we modify the 

parameters   and   slightly, we get values 0r  and 1r  that 

do not coincide so closely. Hence, there is a radial motion 

between aphelion and perihelion in those cases, which is the 

wobble motion that we have already discussed. Such a 

trajectory is not suiting for a landing destination of electrons 

in the hydrogen atom that can facilitate coherent emission 

from the electrons. On such a trajectory, energy can only be 

dissipated and these processes do not contribute to the stability 

of the atom. 

The reader might wonder that we argue with classical 

trajectories within the atom here. However, in the light of the 

discussion in Schmidt, (2016), the propagating electron moves 

through a "Dirac ocean" of proton anti-proton pairs. It can 

regularly plunge into one of the protons it encounters. The 

plunging has the result that the re-emerging electron is 

displaced temporally and spatially. Thus, the electron exhibits 

a fluctuating behaviour all the time. However, this statistical 

broadening does not hinder that on average, the guiding center 

of the fluctuating electron still follows the classical trajectory. 

In this respect it makes sense to investigate classical 

trajectories in the atom. 

We can extend this investigation to higher energy 

levels. E.g., for 2=n  we get  

 
9

0 10526148923844.72425886= u  

 
9

1 10388080994774.72432175= u  

 
910225077519604.71852120=   

 
3010601658949352.15550061=   

 m102.11673414= 10

0

r  

 m102.11670596= 10

1

r  

 Again, 1r  is four times Bohr’s radius, and 0r  is so close to 1r  

that we get in fact a circular trajectory. If we perturb the 

parameters   and   again, we get a much less prominent fit 

of 0r  and 1r . Thus, also in these csaes a wobble motion is on 

top of the circular motion, which does not admit for coherent 

emission of electrons that land on such a trajectory. 

We have also investigated the case 3=n . Here, we 

get  

 
9

0 1056454223012.09968613= u  

 
9

1 1094705295182.09969855= u  

 
91093542319392.09392323=   

 
3010612967813072.15550858=   

 m104.76261658= 10

0

r  
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m104.7625884= 10

1

r  

 Again, we obtain an almost ideal circular orbit. 0r  and 1r  are 

nine times Bohr’s radius. Perturbations of   or   lead to a 

wobble motion on top of this circular orbit. 

We now investigate the numerical values we found 

for 
n  and 1,2,3=n . We obtain  

 
34

1=2= 106.6262)(2  nnem   

 
34

2=3= 106.6262)(2  nnem   

 

The numerical value on the right side is the observed value 

for the Planck constant  . Thus, we have confirmed that in the 

general relativistic atom circular orbits exist that correspond to 

Bohr’s trajectories. We have further confirmed that for the first 

two steps in these circular orbits with ascending radius, the 

rotational momentum between these circular orbits is 

incremental, whereby the increment between neighbouring 

circular orbits is a constant. This constant is identical with the 

measured Planck constant. 

With this, we have found a numerical method to derive the 

Planck constant. This goes as follows: We perform a numerical 

parameter study, where our parameters are the   and   rotational 

momentum and energy parameters. We start with pairs of   and  

, and look if the two real roots of the pseudo potential are close 

to each other. If they are not close,   or   must be modified in 

order to obtain a better match. In this way we converge on one 

of Bohr’s orbit. We can converge on all of Bohr’s orbits in this 

way. The result is a rotational momentum ladder spectrum, 

which increases by a constant when we look at ascending 

neighbouring circular orbits, or in other words the rotational 

momentum ladder spectrum is equidistant. This constant can be 

determined by solely carrying out numerical experiments. 

However, as we have shown, this constant is identical with the 

Planck constant that we know from the experiments. 

We can expand on this thought further. We can imagine that 

one of the other natural constants that enter the calculation has 

a slightly different value (it is the electron mass and charge, the 

proton mass and charge, Newton’s gravitational constant, the 

dielectric constant, and the light velocity). Then, the solution of 

the atom with circular orbits would not yield an equidistant 

rotational momentum ladder spectrum. Hence, coherent 

emission from such a system was not possible, and such an 

atom must necessarily dissipate. Hence, the values of the 

natural constants as they are observed in the experiments are 

the only values that enable a stable atom and are therefore 

unique. 

 

CONCLUSIONS 

We have investigated the geodetic motion with rotational 

momentum in the Kaluza Klein theory with minimally 

coupled gravitational and electromagnetic fields. We have 

shown that the orbits follow generalized Kepler ellipses, 

where these orbits undergo a rotation of the perihelion and the 

ellipses are disturbed by an additional wobbel motion in the 

radial direction. This disturbance is caused by a rotational 

potential that becomes gravitationally active. When the masses 

of the particles envolved is increased, this rotational potential 

can amplify to a potential barrier that devides the orbit into a 

confined inner orbit and an outer orbit. When we apply these 

findings to micro physics, the generalized Kepler ellipses 

describe the electro magnetic interaction force, whereas the 

cases with increased masses organically belong to the electro 

strong and electro weak interaction forces. In the case of the 

electro magnetic interaction force we can look for ideal 

circular orbits. We find that discrete such orbits exist and that 

they coincide with Bohr’s circular orbits in the atom. Quite 

naturally, from these findings a numerical procedure can be 

defined in order to determine the Planck constant numerically, 

which is the constant increment in rotational momentum 

between adjacent circular orbits. In order that such a constant 

increment exists, which guarantees the stability of the atom, 

none of the other natural constants can have a deviating value 

to the value taken from the measurements. 
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