MOBILE BIG DATA ANALYTICS USING DEEP LEARNING AND APACHE SPARK WITH miVLAD
Kaviyan Annamalai. R1, Dr. K.Sathiyamurthy2
1PG Student, Department of Computer Science and Engineering, Pondicherry Engineering College, India

2 Professor, Department of Computer Science and Engineering, Pondicherry Engineering College, India

1kavianannamalai@gmail.com
2sathiyamurthyk@pec.edu
Abstract— The proliferation of mobile devices, such as smartphones and Internet of Things gadgets, has resulted in the recent mobile big data era. Collecting mobile big data is unprofitable unless suitable analytics and learning methods are utilized to extract meaningful information and hidden patterns from data. Mobile devices have matured as a reliable and cheap platform for collecting data in pervasive and ubiquitous sensing systems. Specifically, mobile devices are: Sold in mass market chains, Connected to daily human activities, Supported with embedded communication and sensing modules. The Collecting mobile big data is unprofitable unless suitable analytics and learning methods are utilized to extract meaningful information and hidden patterns from data. In this paper the deep learning with Multi-instance learning (MIL) algorithm has been implemented to improve the prediction accuracy. In order to deal with large scale big data MIL based on the vector of locally aggregated descriptors representation (miVLAD) algorithm has been used. This Entire module works under the Spark-based framework with data frame techniques and MIL, this speeds up the learning of with deep models that consisting of many hidden layers and millions of parameters. We use a context-aware activity recognition application with a real-world dataset containing millions of samples to validate our framework and assess its speedup effectiveness.
Keywords— Apache Spark, DataFrame, Multi-instance Learning (MIL), Mobile Big data.
I. INTRODUCTION
Big data is a terminology for data sets that are so large or complex that traditional data processing applications are inadequate. It also refers to the use of predictive analytics, user behavior analytics, or certain other advanced data analytics methods that extract value from data, and seldom to a particular size of data set. The widespread installation of various types of sensors, such as accelerometers, gyroscopes, compasses, and GPS sensors, in modern mobile devices allows many new applications. Data that we get from this device are gather as big data and is said as mobile big data. Mobile Big Data (MBD) analytics is more versatile than conventional big data challenges that faced by MBD are data sources portability and data traffic is crowd sourced. MBD analytics deals with massive amounts of data collected by millions of mobile devices. Mobile big data is handled by deep learning techniques.
Deep learning (also known as deep structured learning, hierarchical learning or deep machine learning) is a branch of machine learning based on a set of algorithm that performs the execution to model high level abstractions in data. In a simple case, you could have two sets of neurons: ones that receive an input signal and ones that send an output signal. When the input layer receives an input it passes on a modified version of the input to the next layer. In a deep network, there are many layers between the input and output (and the layers are not made of neurons but it can help to think of it that way), allowing the algorithm to use multiple processing layers, composed of multiple linear and non- linear transformation. Learning deep models in MBD analytics is slow and computationally demanding. Typically, this is due to the large number of parameters of deep models and the large number of MBD samples [1].
Architecture of learning deep models on MBD with Apache Spark will increase the speed of learning process. Apache Spark [2] is an open source platform for scalable MapReduce computing on clusters. The role of the Spark platform is to tackling the volume, velocity, and volatility aspects of MBD. Essentially, the Spark engine tackles the volume aspect by parallelizing the learning task into many sub-tasks and each task performed on a small partition of the overall MBD. Therefore, no single machine is required to process the massive MBD volume as one chunk. The Spark engine tackles the velocity point through its streaming extensions, which enable fast and high-throughput processing of streaming data. Finally, the volatility aspect is addressed by significantly training in deep models speedy. This ensures that the learned model reflects the latest dynamics of the mobile system
This paper we focus on improving the speed and accuracy of the deep learning with apache spark DataFrame application programing interface (API) and multi-instance learning techniques. In Sect. 2, we discuss about the literature survey of existing work and the problem which is present in the existing system. In Sect. 3, the proposed system architecture and different steps involved have been provided. In Sect. 4, we discuss about how evaluation metrics are calculated. The conclusion and the future work have been presented in Sect. 5.
II. RELATED WORK

In existing system they present an overview and brief tutorial on deep learning in mobile big data analytics and discusses a scalable learning framework over Apache Spark. Specifically, distributed deep learning is executed as an iterative MapReduce computing on many Spark workers. Each Spark worker learns a partial deep model on a partition of the overall mobile, and a master deep model is then built by averaging the parameters of all partial models. The Spark-based framework speeds up the learning of deep models. Deep models consisting of many hidden layers and millions of parameters, which are difficult to train at once. Instead, greedy layer-by-layer learning algorithms [3,4] have been proposed that basically work as follows. 1) Generative layer-wise pre-training, and 2) Discriminative fine-tuning. Learning deep models can be performed in two main steps. The first step is Gradient computation, the learning algorithm iterates through all data batches independently to compute gradient updates of the model’s parameters. The second step is Parameter update, the model’s parameters are updated by averaging the computed gradient updates on all data batches. These two steps fit the learning of deep models in the MapReduce programming model [5, 6]. Deep learning score high accurate result on MBD data when compared to the no spark frame work. Deep learning models also have been reported as state-of-the-art methods to solve many MBD tasks. For example, the authors in [7] propose a method for indoor localization using deep learning and channel state information. In [8], deep learning is successfully to inference tasks in mobile sensing. Entire deep learning technique are performed in the apache spark for distributed process of tasks MBD partitions are stored into Resilient distributed dataset (RDD) and distributed to the worker nodes. These RDDs are crucial to speed up the learning of deep models as the memory data access latency is significantly shorter than the disk data operations. This apache framework increase the speed of the learning process and decrease the time for the entire process [1].
III. PROPOSED SYSTEM DESIGN

In this proposed work we perform the implementation of data frame API and multi instance learning algorithm. The figure 4.1 shows the proposed architecture of the system. The layer of communication starts from the physical layer to the top most application layer. There are two way communication between some of the modules that has been present in the system. Data frame module has been added in the proposed system which act as a service provider in between the apache spark and physical devices. This data frame module increase the speed of the processing. Deep learning with multi instance algorithm has been designed and used in the proposed system for increasing the performance of the system. The accuracy of the deep learning with the multi instance learning algorithm will be higher when compared to the normal accuracy rate of the deep learning that has been present in the existing system.
[image: image1.png]£]
’ Scala = @
Java puthnn

DataFrames API

// Data Sources \\

Fig. 1 Architecture Diagram
III.I. DATA FRAME API
Apache Spark is one of the most widely used open source processing engines for big data, with rich language-integrated APIs and a wide range of libraries. Over the past few years Spark is deployed to a wide range of organizations through consulting relationships as well as our hosted service, Databricks. They describe the main challenges and requirements that appeared in taking Spark to a wide set of users, and usability and performance improvements they have made to the engine in response.

MapReduce and large-scale data processing has led to the emergence of a wide array of cluster computing systems [9,10,11]. These systems use a variety of new APIs, often based on functional programming, to support both relational queries and more complex types of processing. As Spark transitioned from early adopters to a broader audience system had been chance to see where it’s functional Application Interface (API) worked well in practice where it could be improved, and what the needs of new users were. This system describes the major initiatives we have taken at Databricks to improve usability and performance of Spark. They cover both engine improvements and new APIs to make Spark accessible to non-experts, such as a table-oriented DataFrame API [12]

A Data Frame [13] is a distributed collection of data organized into named columns. In order to make Spark more accessible to non-experts and to increase the information visible to the engine for automatic optimization, we sought to develop a more declarative API. We chose an API based on data frames, a common abstraction for tables. Data frames support operations similar to relational algebra, but expose them as functions in a procedural language, so that Developers can use the control of abstraction features of the language around them to write complex programs.
[image: image6.png]APPLICATION LAYER (Process & Display results, Cantrol the actuators, notifications, etc)

[

APACHE SPARK
searc | | seame || seamc sear
worker | [womssr | [workes MiASTER 7\
bams ssTox
G DATA
CLUSTER MANAGER
P — SERVICE SERVER

|

PHYSICAL DEVICES(Sensars. actsators, RFID tags)

Fig.2 DataFrame Architecture

Data frame module falls into two domains which focus on making the engine performance more and robust for large-scale workloads. Modules are,

· Memory management

· Networking layer.

Memory Management
To improve memory management, DataFrame API solve memory problems based on user reports and implemented a per-node allocator that manages all sources of memory usage within each node. Spark initially had a memory manager to track the size of cached data that the user chose to materialize in memory, evicting old data blocks when a cap was reached. The manager did not keep track in the memory usage for data processing. As a result, a large fraction of the memory exhaustion problems came from processing large joins or aggregations.

To address that system implemented a second cap to track hash tables for joins and aggregation. This cap is allocated dynamically among the threads running these operations as they grow their tables, and threads that are not allowed to take more RAM spill to disk. Lastly, a third space was reserved for unrolling blocks that are read from disk to see whether the uncompressed data is still small enough to cache. In all these cases, they check memory usage every 16 records to handle skewed record sizes. With these controls, the engine runs robustly across a wide range of workloads.
Networking Layer

In Spark's networking layer, the largest challenge was supporting shuffle operations on many nodes. Shuffle operations need to move output data from map tasks to reduce tasks across the network, so that every node is sending some data to every other node. They are challenging to implement because each node may be serving data from multiple disks, multiple connections are generally required to saturate net- work bandwidth, and care must be taken to balance load.

The module used the low-level Java NIO networking API directly and needed to maintain complex state machines internally. In addition, it created higher memory pressure from JVM garbage collection and higher CPU usage than needed due to unnecessary copies of net-work buffers. They replaced the network module with a new implementation based on Netty, a high-performance networking framework. Netty simplifies networking programming by providing a higher level asynchronous event-driven abstraction. Building on Netty, introduced a number of features to improve performance and scalability:

· Zero-copy I/O
· Off-heap network buffer management
· Multiple connections
[image: image2.png]RDD DataFrame

{

R
Python
Java/Scala

Python
Java/Scala

10

Fig.3 Running Time (sec) between RDD and DataFrame
III.II. SCALABLE ALGORITHM FOR MULTI-INSTANCE LEARNING
Multi-Instance Learning (MIL) has been widely applied to diverse applications involving complicated data objects, such as images and genes. However, most existing MIL algorithms can only handle small or moderate sized data. In order to overcome with large-scale MIL problems we are going with MIL based on the vector of locally aggregated descriptors representation (miVLAD) [14], an efficient and scalable MIL algorithms. This algorithm map the original MIL bags into new vector representations using their corresponding mapping functions.

The new feature representations keep essential bag-level information, and at the same time lead to excellent MIL performances even when linear classifiers are used. Thanks to the low computational cost in the mapping step and the scalability of linear classifiers, miVLAD can handle large-scale MIL data efficiently and effectively. miVLAD not only achieve comparable accuracy, but also give hundreds of times faster speed than the others. Moreover, we can regard the new miVLAD representations as multiview data, which improves the accuracy rates in most cases. In addition miVLAD algorithms perform well even when they are used without parameter tuning, which is convenient for practical MIL applications.

miVLAD ALGORITHM

[image: image4.png]Algorithm 2 Mapping Function M, in the miVLAD
Algorithm

1: Input:

2: Instances {xj1,...,Xij,....Xin} in a bag X;

3: A pre-learned codebook C = {ey, ..., ¢k, ..., ck}
4: Output:

5: The feature vector v; which represents the bag X;
6: Procedure:
7
8;
9:

for k=1to K do
Compute v;x using equation (1)
end for
10: Concatenate all K components into one vector v;

We describe the miVLAD (MIL based on the VLAD representation) algorithm. Pseudo code of the miVLAD algorithm is presented in Algorithm 1. The first step is to gather all instances x· j from all training bags. Then, we cluster x· j into K centroids, i.e., C = {c1, . . . , ck, . . . , cK }, with the k-means clustering algorithm, and C is called the codebook. Each instance xij is assigned to its nearest centroid ck = NN(xiij), where NN(x) is the NN of x in the codebook C.

[image: image5.png]Algorithm 1 miVLAD Algorithm

1: Input:

2: Training data {(X1, y1),.... (XNg, YNp)}

3: Train:

4: Learn a codebook C = {cy, ..., ck} based on the set

of all instances x.;, from all training bags

5. fori=1to Np do

6 Get the new feature vector via the mapping function
v < My(X;,C)

7 v <= sign(i)y/Toidl

8 v < vi/|lvill2

9: end for

10 Use the new training set {(vi, y1), ..., (v, YNp)} tO

learn a classifier F

11: Test:

12: for all test bags Xy (i" € {1,2,..., Np}) do

13 Get the new feature vector via the mapping function
v < My(Xyr, 0)

14: vir.g < sign(vir.g)/Tvira]

150 vy < vp/llopllz

16: end for

17 Output the prediction F (vjr)

After that, as presented in Algorithm 2, a mapping function Mv maps a bag Xi into a feature vector vi based on the codebook C. For each bag Xi, the mapping function is to accumulate the total differences xi’ − ck , where the instances xi· are from the bag Xi and are assigned to ck . Then, for the K differences, the function my concatenates them into a new feature vector vi to represent the bag Xi .Note that the dimensionality D of vi is D = K ×d. Hence, a component of vi can be expressed in the following form:

[image: image3.png](1
-

— Ckl

2 i

e XijeQ

Where Ω = {xij |NN(xij) = ck }. Vikl represents the lth attribute of the kth component of vi, and xikl and ckl denote the lth attribute of the instance xij and of its corresponding centroid ck, respectively. In the following, each element of vi is sign square rooted by vi·l ← sign(vi·l)√|vi·l |. Then, the new feature vector vi is subsequently _2-normalized by Vi ← vi / ||vi|| 2. Thus, the bags are turned into corresponding feature vectors.

Finally, we feed (vi , yi) to a standard supervised learner, e.g., an SVM, to learn a classification model F. A bag Xi’ in the testing set will be first mapped into a new feature vector vi’ by Mv . Then, we can get the bag-level prediction via F(vi’).

IV. DISCUSSION
The proposed work is under implementation process. We evaluate and compare the performance of the recommendation system using accuracy and precision metrics with the existing system. The accuracy (AC) is the proportion of the total number of the correct predictions to the actual data set size. It is determined using the equation,

ACCURACY= (TP+TN)/ (TP+TN+FP+FN)

The four instances TP, TN, FP and FN are counted due to the relation between the predicted and actual classes.
•True Positives (TP): The number of positive instances that were classified as positive.
• True Negatives (TN): The number of negative instances that were classified as negative.

• False Positives (FP): The number of negative instances that were classified as positive.

• False Negatives (FN): The number of positive instances that were classified as negative.

The precision, often referred to as positive predictive value, is the ratio of correctly classified positive instances to the total number of instances classified as positive:

PRECISION=TP/(TP+FP)

The recall, also called true positive rate, is the ratio of correctly classified positive instances to the total number of positive instances:

RECALL=TP/(TP+FN)

The F-measure combines precision and recall in a single value:

F-measure=2((precision*recall)/(precision+recall))
V. CONCLUSION AND FUTURE WORK
Scalable spark-based framework for deep learning in mobile big data analytics is discussed. The framework enables the tuning of deep models with many hidden layers and millions of parameters on a computing cluster. Typically, deep learning provides a promising learning tool for adding value by learning intrinsic features from raw mobile bigdata. In existing system the accuracy in the prediction of data is very low due to the memory management and network techniques.

In proposed system we have develop a deep learning model for mobile big data analytics using data frame API and miVLAD to increase more accuracy in learning. Due to this future work more handling of data in deep learning can be achieved.

VI. REFERENCES

[1] Alsheikh, Mohammad Abu, et al. "Mobile big data analytics using deep learning and apache spark." IEEE Network 30.3 (2016): 22-29.

[2] Apache Spark, “Apache Spark–Lightning-Fast Cluster Computing,” 2016, accessed 19 Feb.2016; http://spark.apache.org.
[3] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep Belief Nets,” Neural Computation, vol. 18, no. 7, 2006, pp. 1527–54.

[4] P. Vincent et al., “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion,” J. Machine Learning Research, vol. 11, 2010, pp. 3371–3408.
[5] J. Dean et al., “Large Scale Distributed Deep Networks,” Advances in Neural Information Processing Systems, 2012, pp. 1223–31.
[6] K. Zhang and X.-w. Chen, “Large-Scale Deep Belief Nets with MapReduce,” IEEE Access, vol. 2, 2014, pp. 395–403.
[7] X. Wang et al., “Deepfi: Deep Learning for Indoor Fingerprinting Using Channel State Information,” IEEE Wireless Commun. and Networking Conf., Mar. 2015, pp. 1666–71.

[8] N. D. Lane and P. Georgiev, “Can Deep Learning Revolutionize Mobile Sensing?,” Proc. 16th ACM Int’l. Wksp. Mobile Computing Systems and Applications, 2015, pp. 117–22.
[9] J. Dean and S. Ghemawat,”MapReduce: Simplified data processing on large clusters” In OSDI, 2004.

[10] M. Isard et al., “Dryad: distributed data-parallel programs from sequential building blocks,” Eurosys, 2007.
[11] G. Malewicz et al., ”Pregel: a system for large-scale graph processing,” In SIGMOD, 2010.
[12] P. Vincent et al., “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion,” J.Machine Learning Research, vol. 11, 2010, pp. 3371–3408.
[13] Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or, Josh Rosen, Ion Stoica, Patrick Wendell, Reynold Xin and Matei Zaharia, “Scaling Spark in the Real World: Performance and Usability,” Databricks Inc. MIT CSAIL
[14] Xiu-Shen Wei, Jianxin Wu, and Zhi-Hua Zhou,” Scalable Algorithms for Multi-Instance Learning”, 2016 IEEE.

