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Abstract— The emerging network applications, querying and 

mining from the uncertain graphs has become increasingly 

important. There is a growing need for methods that can 

represent and query  about the uncertain graphs. These 

uncertain graphs are often the result of an information extraction 

and integration system that attempts to extract an entity graph 

or a knowledge graph from multiple unstructured sources. Such 

integration typically leads to identity uncertainty, as different 

data sources may use different references to the same underlying 

real-world entities. In uncertain graphs, the existence of some 

edges is not predetermined. The connectivity of an uncertain 

graph is essentially an uncertain variable, which indicates the 

suitability for investigation of its distribution function. The main 

focus of this paper is to propose a framework to determine the 

distribution function of the connectivity of an uncertain graph. 

Initially, it focus on the discussion of the characteristics of the 

uncertain connectivity and the distribution function is derived. 

An efficient algorithm is designed based on Floyd’s algorithm 

that depicts the connectivity parameters can also be focused to 

improve the network performance. . 

Index terms- Uncertainty, Uncertain graphs, Connectivity, 

Distribution function and information extraction. 

I. INTRODUCTION 

 

To the best of our insight, in the traditional diagram hypothesis, 

the edges and vertices are predestined [1,2]. Hypothetical 

issues on chart hypothesis are concerned with integration, 

nature of the diagram and determination of width. To take care 

of these issues, an assortment of proficient calculations have 

been proposed in the course of the most recent decades and 

effectively connected to a lot of people certifiable issues, for 

example, transportation, interchanges, and store network 

administration. In practice, indeterminacy is unavoidable 

because of the non-existence of data. The traditional 

calculations are given off an impression of being exceptionally 

hard to apply straightforwardly the indeterminacy in 

appreciation of vertices and edges. In this paper, we have 

considered the presence of some non-deterministic edges. The 

presence of such non-deterministic charts is utilized to depict 

the assembly of a system [3,4]. 

To manage non-deterministic diagrams, a few analysts 

presented likelihood hypothesis and created arbitrary charts. 

Normally, an E-R arbitrary chart is acquired by beginning with 

a set of n secluded vertices and including progressive edges 

between them with likelihood 0 < p < 1. In this paper, we first 

study the attributes of width in an indeterminate chart, and after 

that get the comparing appropriation capacity. Besides, we 

expressly plan a calculation got from the Floyd's calculation to 

figure the circulation capacity [5,6]. The productivity of the 

calculation is at long last demonstrated hypothetically and 

tentative. The uncertain theory was designed in 2007 and re-

designed by Liu [21,22]. “Uncertainty Theory”, second ed., 

Springer-Verlag, Berlin.] is a great tool to deal with the non-

deterministic resources with the advent of professional data. 

Nowadays, the concept of uncertain theory has been deployed 

in the network optimization, inventory problem transportation 

problem. In 2013, [13] introduced the concepts of uncertain 

theory into the graph theory. In their research, they introduced 

the connected index for the uncertain graph. The connectedness 

indexes were formulated on the use of Kruskal’s [15] and 

Prim’s [16] algorithm. To the best of our knowledge, there is 

no related study on the connectivity of the uncertain graphs 

[8,9]. This paper focuses on the connectivity of the uncertain 

graphs which is a tentative variable due to the presence of the 

uncertain edges. In this paper, we first study the characteristics 

of connectivity in an uncertain graph, and then obtain the 

corresponding distribution function. 

The remainder of this paper is organized as follows. In Section 

1, an introduction about the graph theory. In Section 2, 

uncertainty theory is introduced briefly for the completeness of 

this research. In Section 3, the distribution function of the 

connectivity of uncertain graph is obtained. In Section 4, an 

efficient framework for calculating the distribution function is 
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proposed and illustrated with some numerical examples. In 

section 5, the conclusion of the research.  

II. UNCERTAINTY THEORY 

Let T be a non empty set and µ be algebra over T. Each 

element
 

 is assigned a number
{ }M 

. In order to 

ensure the mathematical properties [15,12,17], Liu presented 

the following three axioms:  

Axiom 1: The normality of a graph is predicted as 

{ } 1M T 
 

 Axiom 2: The duality of a graph is predicted as 

{ } { } 1
c

M M   
 for all the event  . 

Axiom 3:  The sub additivity for every event 

{ }
i

M 
stated as: 1

{ 1} { }
i i

i

M M


   
 

Definition 1: [Liu] The set function M is called an 

uncertain measure, if it meets the condition of normality, self-

duality and sub additivity axioms. The triplet function (T, µ, M) 

is called the uncertain space. The uncertain measure (T, µ, M) 

is the chance that every event occurs. The product uncertain 

measure was studied by [22] which takes to the next step calls 

‘product measure axiom’. 

Axiom 4: Let (Ti, µi, Mi) be the uncertainty spaces for 

every i= 1, 2, 3…….n. The product uncertain measure, M is an 

uncertain measure satisfying  

 
1 1

   =
i i

i i

M M



 

 



 



 

Definition 2: The tentative variable is a measurable 

function n from an uncertain space (T, µ, M) to be the set of 

real numbers.  

{ } { | ( ) }
i

B T B      
 

Definition 3: The uncertain variables is said to be 

independent if it follows  

   
11

   =min
i ni

i i i i
B BM M 



 

 
  

   

III. UNCERTAIN GRAPH AND ITS CONNECTIVITY 

A. Uncertain graph concepts: 

In this paper, the terminologies associated with this related to 

the illustration from [25]. 

Definition 1:  A graph G is a triple consisting of a vertex 

set V(G) and edge set E(G) (fig. 1) and the relation between the 

two edges is called endpoints [20]. The endpoints are equal 

when the edge is a loop. The endpoints are similar in the nature 

when they are having multiple edges. The number of the 

vertices in the G is called as the order of G. 

 

 1 1 1
 ,  G V E

 

 

 1 1 1
 ,  G V E

 
Fig. 1 Grpah with Edge Set and Vector Set 

Consider a graph of order 4, and then the adjacency matrix is 

known as  

 

11 12 1

21 22 2

1 2

...

...

...

...

n

n

n n nn

a a a

a a a
A

a a a

 

 
 

  

 

 
 

 

  Where, 

1          
 

0
ij

if i and j are the endpoints of the edge
a

otherwise


 
 
 

 

Definition 2: In a graph G, a walk is the list of V0, 

E1,….Ek, Vk of the vertices and edges such that for 1< i<k. The 

walk from the V1 to Vn possesses no repeated vertex.   

Definition 3:  A graph G is connected if there is a u–v path 

whenever
, ( )u v V G

 

3.2 Connectivity in an uncertain graph 

The connectivity is a basic concept in graph theory, which 

measures the connection between the vertices. The connectivity 

is given as: 

,

( ,( ) ( )), min
i j

i j

v v

conG vG V Vd vE  

 
The distribution function of connectivity is given as: 

  

 

 

 

 

1 1

1 1

( ,... ) ( , ] ( ,... ) ( , ]

1

( ,... ) [ , )

1 1

1 1( ,... ) [ , )

0.5

... 1 0.5

0.5

 

m in m in

m

sup s

in

up

sup su inp m

m m

m m

i i i i

B B k B B k

m i i i i

B B k B B k

i m i m

i m i m

B if B

B if B

otherw

M M

M con K

s

M M

i e

 

   

   

 

   

    
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IV. CONNECTIVITY IN AN UNCERTAIN GRAPH WITH 

AN EXAMPLE 

According to the section 3.2 distribution function of the 

connectivity is given as 
{ }M conG k

in an uncertain graph 

has to traverse the set. The algorithm for finding the 

connectivity of an uncertain graph using Floyd’s algorithm is 

depicted as follows: 

1. Sort the set 
 1 2

,  ,
m

x x x
in descending order. 

Without the loss of normality, it is assumed that 

0 1 2 1
1   0

n
x x x x


    

. Set 
1j 

 

2. In uncertain graph G, remove the pair 
 ,G Vi Ei

that 

satisfies 
 

i j
x x

where 
 1,  2.. .i m

The graph 

(fig. 2) is modified according to the condition and 

new graph is calculated in Gj. 

3. Denote the adjacent graph by Gj as 

*

j
G

 

4.  Calculate

*
: 1

j
conG setj j 

and again repeat the 

process 2 still the shortest path is found. 

The working of algorithm is as follows: 

 
Fig. 2 Connectivity in an Uncertain Graph 

The matrix is given as: 

1 2 3 4 5

1 0 8 3 5

2 8 0 2 5

3 0 1 0 3 4

4 6 0 7

5 5 0

o
D

 

 


 
 

 
  

      
The starting matrix is given as: 

1 2 3 4 5

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

o
Q

 

 


 
 
 

 

    
The first step is as follows let i=1, the calculation is as follows: 

   

   

   

   

   

1 0 0 0

1,2 1,2 1,1 1,2

1 0 0 0

1,3 1,3 1,1 1,3

1 0 0 0

1,4 1,4 1,1 1,4

1 0 0 0

1,5 1,5 1,1 1,5

1 0 0 0

2 ,1 2 ,1 2 ,1 1,1

 ;   8; 0 8  8

;   3; 0 3  3

;   5; 0 5  5

;   ; 0

;   8 0

=

8; 8

C m in c d c m in

C m in c d c m in

C m in c d c m in

C m in c d c m in

C m in c d c m in

C

   

   

    

       

   





   
1 0 0 0

2 ,3 2 ,3 2 ,1 1,3
;   2; 8 3 2m in c d c m in   

 

 Similarly, the same step is followed until the shortest 

path is found. The adjacency matrix is calculated as: 

       

1 2 3 4 5

1 0 8 3 5

2 8 0 2 5

3 0 1 0 3 4

4 6 0 7

5 5 0

o
D

 

 
 

 

 

 
  

    

 

1 2 3 4 5

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

o
Q

 

 
 

 

 
 

 

    

4 

7 

5 

2 

1 

3 

3 

6 5 

8 1 

4 

3 

5 

2 
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1

1 2 3 4 5

1 0 8 3 5

2 8 0 2 13 5

3 0 1 0 3 4

4 6 14 9 0 7

5 5 0

D

 

 


 

 

 

 

    

 

1

1 2 3 4 5

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 1 1 4

5 5 5 5 5

Q

 

 
 

 

 
 

 

    

2

1 2 3 4 5

1 0 8 3 5 13

2 8 0 2 13 5

3 0 1 0 3 4

4 6 14 9 0 7

5 13 5 7 18 0

D

 

 


 

 

 

 

 
 

 

2

1 2 3 4 5

1 1 1 1 2

2 2 2 2 2

3 3 3 3 3

4 4 1 1 4

5 2 5 2 2

Q

 

 
 

 

 
 

 

    

3

1 2 3 4 5

1 0 4 3 5 7

2 2 0 2 5 5

3 0 1 0 3 4

4 6 10 9 0 7

5 7 5 7 10 0

D

 

 


 

 

 

 

 
 

 

3

1 2 3 4 5

1 3 1 1 3

2 3 2 3 2

3 2 3 3 3

4 4 3 1 4

5 3 5 2 3

Q

 

 
 

 

 
 

 

    

4

1 2 3 4 5

1 0 4 3 5 7

2 2 0 2 5 5

3 0 1 0 3 4

4 6 10 9 0 7

5 7 5 7 10 0

D

 

 


 

 

 

 

 
 

 

4

1 2 3 4 5

1 3 1 1 3

2 3 2 3 2

3 2 3 3 3

4 4 3 1 4

5 3 5 2 3

Q

 

 
 

 

 
 

 

    
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5

1 2 3 4 5

1 0 4 3 5 7

2 2 0 2 5 5

3 0 1 0 3 4

4 6 10 9 0 7

5 7 5 7 10 0

D

 

 


 

 

 

 

 
 

 

5

1 2 3 4 5

1 3 1 1 3

2 3 2 3 2

3 2 3 3 3

4 4 3 1 4

5 3 5 2 3

Q

 

 
 

 

 
 

 

    
The last matrix D5 and Q5 shows us the connectivity of the 

shortest paths. Hence from above graph the shortest path is 

found as 5 to 2 to 3 to 4 is the shortest path.  

 

V. CONCLUSION  

In this paper, we focused on the distribution function of the 

connectivity of the uncertain graphs. The algorithm is used to 

calculate the shortest path of a given uncertain graph. It has 

found that it follows the polynomial time complexity of the 

O(mn3), where m is the count of edges and n is the count of 

vertices. Moreover, in this paper the vertices are 

predetermined. It focus on the simulation of finding the 

shortest path by taking the parameter connectivity. In future, 

the research may investigate with the flow between the edges 

in an uncertain graph.  
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