
International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 488-491 

 

488 | P a g e  

 

A FAST OPTIMIZED PARALLEL GRAPH 

ALGORITHM ON GPGPU 

C.P.Mogal 1, C.R. Barde2 

Dept. of Computer Engineering, G.E.S.’s R.H. Sapat College of Engineering, Management Studies and 

Research, Nasik Affiliated to Savitribai Phule Pune University 
1mogalcp.31@gmail.com 

2erchandubarde@gmail.com 
 

Abstract— Numerous Classic and emerging applications uses 

graph processing as core component. NVIDIA proposed CUDA 

(Computed unified device architecture) which increases the 

computation substantially with power of GPU. Graph algorithm 

is simplest way to improve the graph processing performance. In 

spite of improve programmability of GPU, writing efficient and 

correct program is very difficult and the task become more 

challenging and complex in case of graph due to irregular 

structures and large size of graph data. We proposed few 

fundamental graph algorithms like BFS, shortest path algorithm 

which efficiently accelerate and optimized graph processing with 

GPGPU (general Purpose graphical processing unit) technique. 

 Index Terms-CUDA, GPGPU, Graph processing, BFS, Shortest 

path. 

I. INTRODUCTION  

Graph algorithms form fundamental to many disciplines 

and are common in scientific and engineering applications. The 

need for high computation power and low price results into 

areas such as Graphics processing units (GPU) [20]. The 

sectors like defence, medicine, GIS widely using applications 

that are depend on graph processing. This paper deals with how 

to use GP-GPUs efficiently for graph algorithms and efficient 

GPU implementations for the various problems thus faced. The 

algorithms focus on minimizing irregularity at both algorithmic 

and implementation level. It also deals with analysis of all pair 

shortest path algorithm by performing on different memories of 

GPU. Literature survey shows that the graph processing is 

complex because of the irregularity of graph structure and the 

large size. The CUDA programming simplifies and improves 

the performance of graph processing with optimized 

fundamental graph algorithms still it is difficult to write the 

effective program. In this paper we proposed the graph 

algorithms which are BFS (Breadth-First Search) and APSP 

(All pair Shortest Path) through use of GPU. The proposed 

work will help to reduce data transfer rate CPU to GPU, 

reduced access of global memory by using shared memory and 

memory management. 

II. RELATED WORK 

Substantial amount of work has been done in graph 

domain. 

Recently P.Harish and P. Narayanan proposed the fast 

graph algorithm on large graphs. Medusa implementation of 

GPGPU program simplifies graph processing. It proposed 

optimized technique which improves system performance It 

Provides different APIs to write GPU graph algorithm. It hides 

a GPU programming with help of APIs. Medusa L_threads to 

vertex and having L_edges to edge. Medusa uses APIs like add 

Edge and add Vertex to initialized graph structure. It shows 

result by comparing with other manually tunes algorithms, and 

hence claim for accelerated and enhanced performance in 

simplified way. [1] P. Harish and P.J.Narayanan Algorithms 

for large graph. They proposed the graph algorithm like BFS, 

SSSP, and APSP on large graph which is faster than previous 

work.[2] It finds that for scientific application is lack of higher 

precision than regular gamming applications.[7]Work achieves 

a speed up of 9 to 12 times over the best sequential CPU 

implementation. For instance, implementation finds connected 

components of a graph of millions of nodes and equivalent 

edges in about few milliseconds on a GPU, given a random 

edge list. [6] has presented a BFS implementation on the GPU. 

It is most suitable for accelerating sparse and near regular 

graphs, which are widely seen in the field of EDA. Edge-

Message-Vertex (EMV) for fine-grained processing on vertices 

and edges proposed by [19]. EMV is specifically tailored for 

parallel graph processing on the GPU. [8] Proposed APSP 

algorithm to calculate shortest path but fails to achieve optimal 

result for sparse graph. [3] [11] primarily explained parallel 

algorithms and implementations for solving the single source 

shortest path problem on large-scale graph instances. [9][10] 

presented parallelization of BFS tailored to the GPU’s 

requirement for large amounts of fine-grained, bulk-

synchronous parallelism. Merrill and Garland, presented 

Scalable GPU graph traversal. Also demonstrated that GPUs 

are well-suited for sparse graph traversal. [22] explain basic 

graph algorithm in parallel. 

III. PROPOSED SYSTEM  

In the normal world, numerous unpredictable, interrelated 

occasions are occurring in the meantime, yet inside a fleeting 

grouping. Despite the fact that CUDA with GPGPU 

engineering enhance execution of chart registering measures 

composing powerful program for unpredictable extensive 

mailto:1mogalcp.31@gmail.com
mailto:erchandubarde@gmail.com


International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 488-491 

 

489 | P a g e  

 

diagram structure is perplexing errand. The Proposed 

implementation of a graph processing for improving 

performance of application like data mining ,network analysis, 

vehicle routing etc. where there is large graphs are used .  

A. Architecture diagram  

 
 

 

  Fig 1: - System Architecture Diagram  

 

The figure 1 demonstrates framework of system 

architecture. In first stage host designate device memory for 

graph information. Graph chart Data then exchange from CPU 

primary memory to GPU memory. In the second stage CPU 

teach the GPU for preparing, in that CUDA Kernel capacity 

characterized for BFS portion work that execute the edge-

driven and in All Pair most limited way calculation subgroup 

the edges that execute in parallel methodology. In the third 

stage string execution administrator of GPU executes portion 

capacity in all centres of GPU in parallel. At the last gather 

result from all threads and exchange to CPU. 

CUDA Memory Organization an expansive segment of 

processing time on the device is spent on information 

development, particularly the perusing of information into the 

individual thread. Since there are several number-crunching 

units on the GPU, the memory transfer speed of the PC chip is 

frequently the bottleneck or significant time shopper. With 

four sorts of memory accessible on the GPU, picking the right 

memory sort and using it accurately is essential for greatest 

velocity. [20] 

B. Dataset 

Our experimental dataset includes two categories of graphs: 

real-world and random graph. We use the GTgraph graph 

generator to generate Random Graph. For APSP Dataset of 

random graph is used and RoadNet CA is used for BFS with 

detailed as follows [16]. 

 

1) Dataset Name - RoadNet-CA 

 Dataset statistics                                                              

 Nodes   1965206                                                                 

 Edges   5533214  

2) Dataset Name –Random graph / RoadNet-CA 
Dataset statistics 

Nodes 65536 

3) Dataset Name –WikiTalk   

      Dataset statistics 

 Nodes 4096 

TABLE I 

DATASET ROADNET-CA DETAILS  

 
Above dataset will gives details about dataset used for carry 

experiment. 

C. BFS (Breadth First Search) Algorithm 

It is fundamental block for many of high level graph 

analysis and is use find out reachable from given source. To 

increase the performance of applications must have to increase 

the performance of graph algorithms. [11] [8] In this system 

BFS is first graph algorithm, BFS algorithm achieve 

parallelism through edge wise. 

 

1: Start 

2: Create vertex array V and edge array E for given G(V, E) 

3: Create visited array & frontier array Va and Ea of size V 

4: Initialize Va and Ea to false 

5: Select source = = 0 

6: Create cost array Ca and set to 0  

7: Calculate no of blocks and no of threads 

8: Allocate host memory & allocate  device memory 

9: Copy G data from CPU to GPU 

10: Set the source node S as true 

11: Copy visited node, nodelist, edgelist to device memory 

12: Allocate result array size and copy on device memory 

13: While Ea not empty do 

14: for each vertex / edge V, E in parallel 

15: Call CUDA kernel 

16: CUDA thread sync( ) 

17: Free all memory and display cost Re-assign number 

 

CUDA parallel function ( ) 

1: Start 

2: calculate thread_Id 

3: If (tid < No. of node and graph visited [ ] 

4: for (all the edges of current vertex check already visited) 

    if not then add to mask array 

5: If (! visited [graph]) 

6: Cost= cost + [source to visited vertex] 

7: E[cnt ++] 

8: Return to CPU call 

9: End 

 

D. APSP(All Pair Shortest Path) Algorithm  



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 488-491 

 

490 | P a g e  

 

 

The All Pair shortest path is used to find shortest distance 

between all pair of vertices having intermediate node k where, 

k is number of vertices [8]. In proposed algorithm graph is 

converted to adjacent matrix and with help of different GPU 

memories like global, texture and shared memory the program 

execution is carried out. For APSP, problem input is in the 

form of adjacency matrix and processing data are stored into 

shared memory to reduce latency for improving performance. 

[24]. 

 

1: Start  

2: Read V no. of vertex and E no. of edges of graph G (V,E)  

3: Create array V[ ], E[ ] for vertex and edge  

4: Create adjacency matrix A from given graph G  

5: Allocating size of CPU &GPU variable using CUDAmalloc()   

6: Transfer data from CPU to GPU usingCUDA memcpy()  

7: Start computing on Host()  

8: Calculate no. of block and thread for parallel processing  

     //Parallel CUDA code to find out Min[i,j] i.e  

// A[i,j]= Min(A[i,j]+A[k,j]) using global memory 

 
--global cuda( )—  

Step 1: Calculate thread_Id.x  

Step 2: For each i < No matrix esteem do  

Step 3: if ( i < N && j < N)  

Step 4: Find Min (i,j) using k=1  

Step 5: A[i,j]=(Min[i,j]+A[k,j])  

Step 6: Update A[i,j]  

Step 7: Do this for all number of vertices  

Step 8: Copy result back to CPU  

Step 9: Free CPU memory  

Step 10: End 

 

IV. EXPERIMENTAL SETUP AND RESULT SETS 

A. Software and Hardware 

Languages used: CUDA 

Software Description Interface: A single machine with 

CUDA capable GPU, Ubuntu and NVIDIA CUDA Toolkit is 

required for running the application 

We test the performance of the serial implementation of 

APSP algorithm and parallel implementation on graph that 

having large number of vertices. Following tables illustrate the 

result set of results of proposed system. 

Table II and Table III illustrate Proposed BFS algorithmic 

time taken on Fermi and Kepler architecture 

 

 

 

 

 

TABLE II 

 BFS Algorithm run time using 256 Block/Threads  

 
 

TABLE III 

 BFS Algorithm run time using 1000 Block/Threads 

 

 
 

Following Table IV shows algorithm of APSP on GT740M 

 

TABLE IV  

 APSP Algorithm run time Speedup 

 
 

Following figure 2 illustrate comparison between existing 

system and Proposed System 

 

 
 

Fig 2-Performance comparison exiting system Vs Proposed 

system 

V. CONCLUSIONS 

 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 488-491 

 

491 | P a g e  

 

The BFS and All pair shortest path algorithms with edge 

centric methodology of computation proposed in paper. The 

results shows there is substantial performance improvable.The 

result are same as actual results. As future work, this application 

can be ported to multiple GPU devices that will run in parallel. 

As the number of GPU cards used increases, a proportional speed 

up of the application is expected. The idea of parallelizing the 

pattern matching algorithm can be extended to parallelizing the 

pre-processing part. This process is expected to produce 

enormous speed as all the costly computations can be offloaded to 

the GPU. By using overlap kernel execution with data transfers 

there can be increase speed of execution. 

VI. ACKNOWLEDGMENT 

We are glad to express our sentiments of gratitude to all who 

rendered their valuable guidance to us. We would like to express 

our thanks to All Staff of Computer Department of G.E.S.’s R.H. 

Sapat COE., Nashik. We are also present our gratitude towards all 

the researcher for their valuable work in domain of graph 

computing and for encouraging new one for further research and 

study. We thank the anonymous reviewers for their comments.  
 

REFERENCES 

 
[1]  Jianlong Zhong and Bingsheng He ,"Medusa-Simplified Graph 

Processing on GPUs".IEEE Transaction on parallel and distributed 

system, Vol. 25, NO. 6, June 2014. 

[2] J. P. Harish and P. J. Narayanan, “Accelerating large graph algorithms 

on the GPU using cuda," in Proceedings of the 14th international 

conference on High performance computing, HiPC'07, (Berlin, 

Heidelberg), pp. 197-208, Springer-Verlag, 2007. 

[3] David A. Bader and Kamesh Madduri,”Designing Multithreaded 

Algorithms for Breadth-First Search and connectivity on the Cray 

MTA-2,” ICPP, pp. 523-530, 2006. 

[4] J.D. Owens, D. Luebke, N.K. Govindaraju, M. Harris, J. Kruger, ”A 

Survey of General-Purpose Computation on Graphics Hardware,”in 

Proc Eurographics, State Art Rep., pp. 21-51, 2005. 

[5] V. Vineet and P. Narayanan, “CUDA cuts: Fast graph cuts on the 

GPU,"in Computer Vision and Pattern Recognition Workshops, 

2008.CVPRW'08. IEEE Computer Society Conference on, pp. 1-8, 

IEEE,2008. 

[6]  L. Luo, M. Wong, and W.-M. Hwu, ”An Effective GPU 

Implementation of Breadth-First Search,” in Proc. DAC , pp. 52-55, 

2010. 

[7] J. Soman, K. Kishore, and P J Narayanan ,“A Fast GPU Algorithm for 

Graph Connectivity”, IEEE Transaction on parallel and distributed 

system, Vol. 2, June 2012. 

[8] F G.J. Katz and J.T. Kider, “All-Pairs Shortest-Paths for Large 

Graphs on the GPU “, in Proc. Graph. Hardware, 2008, pp. 47-55. 

[9]  D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph 

traversal," in Proceedings of the 17th ACM SIGPLAN symposium on 

Principles and Practice of Parallel Programming, PPoPP '12, pp. 117-

128, 2012. 

[10] Merrill, D. et al. 2011. High Performance and Scalable GPU Graph 

Traversal. Technical Report CS2011-05. Department of Computer 

Science, University of Virginia. 

[11] J. Bader, D.A. et al. On the Architectural Requirements for Efficient 

Execution of Graph Algorithms. 2005 International Conference on 

Parallel Processing (ICPP’05) (Oslo, Norway), 547-556. 

[12] E. Dekel, D. Nassimi, and S. Sahni, “Parallel matrix and graph 

algorithms," SIAM Journal on computing, vol. 10, no. 4, pp. 657-675, 

1999. 

[13] “10th DIMACS implementation 

challenge,"http://www.cc.gatech.edu/dimacs10/index.shtml accessed 

on oct 20th, 2015 

[14] Nvidia CUDA official site for developer website 

https://developer.nvidia.com/cuda-zone 

[15] CUDA Zone. Official webpage of the nvidia cuda api. 

Websitehttp://www.nvidia.com/object/cuda_home_new.html 

[16] GTgraph: A suite of synthetic random graph generators: 

https://sdm.lbl.gov/kamesh/software/GTgraph/Accessed: 2011-07-11  

[17] Cormen, Leiserson,Rivest, And Stein, ” Introduction to Algorithms”, 

2012,,Book  

[18] NVIDIA, “Cuda: Compute unified device architecture programming 

guide “. Technical report, NVIDIA, 2014.  

[19] J. Zhong and B. He, “Parallel graph processing on graphics processors 

made easy," Proc. VLDB Endow., vol. 6, pp. 1270-1273, Aug. 2013 

[20] C.P.Mogal and C.R..Barde ,”Review Paper on Optimised and 

accelerated Parallel Graph Algoritm on GPGPU ” IJCSMC, Vol. 

4,Issue. 12, December 2015, pg.103 – 106. 

[21]  J. Zhong and B. He, “Kernelet: High-throughput gpu kernel executions 

with dynamic slicing and scheduling," IEEE Transactions on Parallel 

and Distributed Systems, vol. 99, no. Pre-Prints, p. 1, 2013. 

[22] M. J. Quinn and N. Deo, “Parallel graph algorithms," ACM Computing 

Surveys (CSUR), vol. 16, no. 3, pp. 319-348.  

[23] M. Makulla and R. Berrendor,” Evaluating Parallel Breadth-First 

Search Algorithms for Multiprocessor Systems “,iariajournals,vol 

7,2014 

[24] C.P.Mogal and C.R.Barde ,“A fast and optimized graph algorithm on 

GPGPU,”Cpgcon2016 conference, PCCOE, Savitribai phule Pune 

University,24 March 2016 

 

https://developer.nvidia.com/cuda-zone

