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 Abstract: The objective of this paper is to show an explicit 

formulas of the Average Run Length (ARL) for Exponentially 

Weighted Moving Average (EWMA) chart when observations 

are described by Moving Average order q (MA(q)) processes 

with exponential white noise. The ARL is a traditional 

measurement of control chart’s performance, the expected 

number of observations taken from an in-control process until 

the control chart falsely signals out-of-control is denoted by 

ARL0. An ARL0 will be regarded as acceptable if it is large 

enough to keep the level of false alarms at an acceptable level. A 

second common characteristic is the expected number of 

observations taken from an out-of-control process until the 

control chart signals that the process is out-of-control is denoted 

by ARL1. In particular, the explicit analytical formulas for 

evaluating ARL0 and ARL1  be able to get a set of optimal 

parameters which depend on a smoothing parameter ( ) and 

width of control limit ( b ) for designing EWMA chart with 

minimum of
 
ARL1. 

Keywords: Exponentially Weighted Moving Average chart, 

Average Run Length, Integral Equations. 

I. INTRODUCTION 

Statistical Process Control (SPC) play a vital role in 

monitoring, detecting changes in a processes, and uses for 

measuring, controlling and improving quality in areas such as 

industrial and manufacturing, finance and economics, 

computer sciences, epidemiology, public health surveillance 

and in other areas of applications (see Frisen [1]; Noorossana et 

al [2]; Mazalov and Zhuralav[3]). The control chart is an 

important statistical technique that is used to monitor the 

quality of a process. All popular charts such as Shewhart, 

Exponentially Weighted Moving Average (EWMA) and 

Cumulative Sum charts have been developed for detecting 

changes in a process means. The Shewhart chart was 

introduced by Shewhart [4] which is widely used in many 

applications as the main tool for detecting large changes in a 

process mean. However, the Shewhart chart has been found to 

be inadequate for detecting small shifts in process means. In 

the past few decades, the Cumulative Sum (CUSUM) and the 

Exponentially Weighted Moving Average (EWMA) charts 

have been proposed as good alternatives to the Shewhart chart 

for detecting small shifts. The Exponentially Weighted Moving 

Average (EWMA) chart is very common and effective 

procedure which was first introduced by Robert [5]. It is a very 

flexible and effective chart for detecting small changes and has 

the advantage of showing robustness to non-normality (Borror 

et al.[6]). Later,  Nong et al. [7]  implemented EWMA chart for 

monitoring the events intensity for intrusion network systems. 

Han [8] employed EWMA and CUSUM charts in economics 

and finance to detected turning point in the IBM’s stock. In 

addition, EWMA chart were applied in lifetime observations 

see e.g  Zhang and Chen[9]. 

The characteristic of control chart is Average Run Length 

(ARL) which is the average number of samples taken before an 

action signal is given. The ARL should be sufficiently large 

while the process is still in-control is denoted by ARL0 and the 

Average Delay time which is mean delay of true alarm times. It 

should be small when the process goes out-of-control is 

denoted by ARL1. Many methods for evaluating the ARL0 and 

ARL1 for control charts have been studied in the literature. A 

simple approach that is often used to test other methods is 

Monte Carlo (MC) simulation. MC is simple to program and is 

convenient for controlling and testing accuracy of analytical 

approximations.  However, MC is usually based on a large 

number of sample trajectories so it is very time consuming.  

Markov Chain Approach (MCA) is considered as a popular 

technique. It is based on approximation of Markov Chains by 

using matrix inversions. Although there are at present no 

theoretical results on accuracy of this procedure, the results 

have been tested by direct comparison with MC simulations. 

Integral Equation (IE) is the most advanced method currently 

available. However, the results for ARL0 and ARL1 usually 

cannot be obtained analytically and intensive programming or 

specialized software is required to obtain numerical results. 

Recently, explicit formulas for evaluation ARL have been 

presented. Sukparungsee and Novikov [10] have used the 

Martingale approach to derive approximate analytical formulas 

for ARL and AD in the case of Gaussian distribution and some 

Non-Gaussian distribution. Later, Areepong and Novikov [11] 

derived the explicit formulas of Average Run Length 

(ARL) and Average Delay (AD) for EWMA control chart for 

the case of Exponential distribution. 
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Traditional SPC technique is based on the fundamental 

assumption that random data are independent identically 

distributed. However, this is not always an assumption of 

practical interest in applications, e.g., in chemical industry, 

were random observed data are serially dependent, so its need 

to be monitored by appropriate control charts. Mastrangelo, 

C.M. and Montgomery, D.C. [12] have been evaluated the 

performance of EWMA control charts for serially-correlated 

process based on Monte Carlo simulation technique. 

Vanbrackle, L. N. and Reynold, M.R. [13] were estimated the 

ARL by using an Integral Equation and Markov Chain 

Approach to evaluate EWMA and CUSUM control charts in 

case of AR(1) process with additional random error. Recently, 

Mititelu et al. [14] presented the explicit formulas for ARL by 

Fredholm Integral Equation for one-sided EWMA control 

chart with Laplace distribution and CUSUM control chart with 

Hyperexponential distribution. Later, Busaba et al. [15] was 

analyzed the explicit formulas of ARL for CUSUM control 

chart, its corresponding in the case of a Stationary First Order 

Autoregressive: AR(1) process with Exponential white noise. 

Consequently, the aim of paper is to present the explicit 

formulas of Average Run Length (ARL) of EWMA control 

chart for Moving Average: MA (q) process with exponential 

white noise. Using the explicit formulas we have been able to 

provide the tables for the smoothing parameter (  ) and width 

of control limit ( b ) for designing EWMA chart with 

minimum of
1ARL . 

II. THE AVERAGE RUN LENGTH (ARL) FOR EWMA CHART OF 

MA(Q) PROCESSE WITH EXPONENTIAL WHITE NOISE 

In this paper we consider SPC charts under the assumption 

that sequential observations 
1 2
, ,...,   are independent random 

variables with a distribution function   ,F x  , the parameter 

0
   before a change-point time     ("in-control" state; 

    means that there are no change at all) and 
0

   after 

the change-point time   ("out-of-control" state).
     

All popular charts like Shewhart, Cumulative Sum 

(CUSUM) and EWMA charts are based on use of stopping 

times .  The typical condition on choice of the stopping times 

  is the following: 

                                ( ) ,E T


                               (1) 

where T  is given (usually large), and (.)E


 denote that the 

expectation under distribution 
0

( , )F x   (in-control) that the 

change-point occurs at point   (where   ). In literature on 

quality control the quantity ( )E 


 is called as Average Run 

Length (ARL) for in-control process of the algorithm. Then, 

by definition, ARL0 = ( )E 


 and the typical practical 

constraint is ARL0 = .T  

Another typical constraint consists in minimizing the 

quantity
 

                   
   1 ,Q E


                          (2)  

where (.)E


 is the expectation under distribution ( , )F x   

(out-of-control) and   is the value of parameter after the 

change-point. We restrict on the special case, usually 1  . 

The quantity 
1
( )E   is called as Average Run Length for out-of-

control process (ARL1) and one could expect that a sequential 

chart has a near optimal performance if its ARL1 is close to a 

minimal value. 

The EWMA statistics based on MA(q) process is defined by 

the following recursion: 

                  
(1 )  ,   t 1, 2,...

1
X X Z

t t t
    


       (3) 

where tX  is the EWMA statistics, tZ  is a sequence of 

MA(q) process and the initial value is a constant  (Z0 = u) and 

(0,1)   is smoothing parameter. 

The corresponding stopping time for expressions (3) define 

as  

        
  0

,    ,   .inf 0;  X u b xt X b
t

                 (4) 

where b  denote control limit. 

The general Moving Average process, denoted by MA(q) 

process can be written as:  

1 1 2 2
...

t t t t q t q
Z       

  
      

where 
t

  is to be a white noise processes assumed with 

Exponential distribution. An moving average coefficient 

1 1
i

   . 

III. SOLUTION FOR EVALUATING ARL0  AND ARL1 OF EWMA 

PROCEDURE 

In this section we present the explicit formulas for ARL 

which is submitted in Petcharat [16]. We assume that, the 

process initially in-control
0

X u . The integral equation 

defines in  L u as follow; 

   
 

   1 1 2 2

0

11
1 ...

b

t t t q t q

y u
L u L y f d y


      

 
  

  
        

 


 

   
   

 

...
1 1 1 2 2

0

1
1

uy t t t q t qb

L u L y e e d y

      

  



   
   



  
                (5) 

Let  
   

1 1 2 2
...1

exp
t t t q t qu

C u
      

 

  
   


 
 
 

 
then the function  L u in (5) can be written as  

 
 

   
0

1

1
bC u

L u L y e d y


    , 0 .u b               (6) 

We used the second kind Fredholm integral equation to 

derive the ARL for MA(q) process. Now, We obtain the 

explicit formula for ARL0 as follows: 

 

0 0

0

1 1 2 2

0 0

1
exp exp 1

1
...

exp exp 1
t t q t q

u b

ARL
b




 

     


 

  


 

 
  

  

   
   
   

   
   
   

       (7) 
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 

1 1

1

1 1 2 2

1 1

1
exp exp 1

1
...

exp exp 1
t t q t q

u b

ARL
b




 

     


 

  


 

 
  

  

   
   
   

   
   
   

           (8) 

Using the explicit formulas, we have been able to provide 

the tables for the optimal smoothing parameter (  ) and width 

of control limit ( b ) for designing EWMA chart with minimum 

of ARL1. We first describe a procedure for obtaining optimal 

designs for EWMA chart. The criterion used for choosing 

optimal values for is smoothing parameter ( ) and width of 

control limit ( b ) for designing EWMA chart with minimum of 

ARL1 for a given in-control parameter value 
0

 =1, ARL0 = T  

and a given out-of-control parameter value (
1

  ). We 

compute optimal ( , b ) values for T = 370 and 500 and 

magnitudes of change. Table of the optimal parameters values 

are shown in Table 3-4. 

The numerical procedure for obtaining optimal parameters 

for EWMA designs  

1. Select an acceptable in-control value of ARL and decide 

on the change parameter value (
1 ) for an out-of-control 

state.   

2. For given 
0

 and T, find optimal values of   and b  to 

minimize the ARL1 values ( *

1
ARL ) given by equation 8 subject 

to the constraint that ARL0 = T  in Equation 7, i.e.   and 

b are solutions of the optimality problem.  

IV. NUMERICAL RESULT 

In this section, we present explicit formulas of ARL for 

EWMA chart when observations are moving average order q 

process with exponential white noise and compare to the ARL 

from approximated the Gauss-Legendre numerical scheme for 

integral equation(IE) with 500m  . First, define the relative 

error as 
)

(%) 100,
Explicit IE

Diff
Explicit


   we used Equation (7) and 

(8) to evaluated ARL. In Table 1 and 2, we compare the 

solution of explicit formula (Explicit) against numerical 

approximation (IE) for EWMA chart when 1   in the case 

MA(2) and MA(3) respectively, which they are in good 

agreement. Notice that, the percentage of relative errors is 

small difference with 500m  nodes. In Table 3 and 4, we use 

(5) and (6) to show the ARL0 and ARL1 
results of  EWMA chart 

for any shift size in mean  . We use MA(2) process with 

parameter 0.05   and given ARL0=370, 500 with 
1

0.1  , 

2
0.2  . In the case of MA(3) process, we use 0.05  and 

given ARL0=370, 500 with
 1

0.1  ,
2

0.2, 
3

0.3  . 

Obviously, the results from suggested formulas are very close 

to approximation IE. Note that, calculations with explicit 

formula from Equation (5) and (6) is simple and very fast to 

calculate which the computational times takes less than 1 

second. The numerical results in terms of optimal width of the 

smoothing parameter (  ), optimal width of control limit ( b ) 

and minimum ARL1 (
*

1
ARL ) for ARL =370 and 500 are shown 

in Table 3 and 4. For example, in the case MA(2), if we want 

to detect a parameter change from 1   to 1.05   and the 

ARL value is 370 then the optimality procedure given above 

will give optimal parameter values   = 0.168 and H  = 0.257. 

On substituting the values for  ,   and b into Equation 6 we 

obtain 
*

1
ARL value = 25.146. As shown in Table 1 and 4 the use 

of the suggested explicit formulas for ARL0
 

and ARL1for 

EWMA chart can greatly reduce the computation times, and 

are useful to practitioners especially finding optimal 

parameters of EWMA chart. 

TABLE I.  COMPARISON OF ARL VALUES COMPUTED USING EXPLICIT 

FORMULAR (EXPLICIT) AGAINST NUMERICAL APPROXIMATION (IE) FOR MA(2) 

WHEN 0.069597b   
FOR ARL0 =370 AND 0.06966972b   FOR ARL0 =500 

WITH
1

0.1  AND
2

0.2   

 

(shift  
size) 

0
370ARL   

%

Diff  

0
500ARL   

%

Diff  

Explicit 

IE 

(CPU 

Time: 

second) 

Explici

t 

IE 

(CPU 

Time: 

second) 

0.00 
370.952 

(0.14) 

370.952 

(2.901) 
0.005 

500.03 

(0.14) 

500.033 

(26.99) 0.001 

0.01 
136.804 

(0.14) 

136.224 

(4.307) 
0.424 

151.17 

(0.14) 

151.597 

(30.828) 0.282 

0.03 
60.434 

(0.14) 

60.254 

(8.113) 
0.298 

63.076 

(0.14) 

63.357 

(34.681) 0.445 

0.05 
38.783 

(0.14) 

38.593 

(11.826) 
0.490 

39.850 

(0.14) 

39.635 

(38.503) 0.540 

0.07 
28.564 

(0.14) 

28.326 

(15.679) 
0.833 

29.137 

(0.14) 

29.288 

(42.294) 0.518 

0.10 
20.494 

(0.14) 

20.382 

(19.486) 
0.547 

20.785 

(0.14) 

20.634 

(46.767) 0.726 

0.20 
10.646 

(0.14) 

10.611 

(23.214) 
0.329 

10.722 

(0.14) 

10.678 

(53.542) 0.410 

TABLE II.  COMPARISON OF ARL VALUES COMPUTED USING EXPLICIT 

FORMULAR (EXPLICIT) AGAINST NUMERICAL APPROXIMATION (IE) FOR MA(2) 

WHEN 0.095897b   
FOR ARL0 =370 AND 0.0952842b   FOR ARL0 =500 

WITH
1

0.1  ,
2

0.2  AND 
3

0.3   

 

(shift  
size) 

0
370ARL   

%

Diff  

0
500ARL   

%

Diff  

Explicit 

IE 

(CPU 

Time: 

second) 

Explici

t 

IE 

(CPU 

Time: 

second) 

0.00 
370.302 

(0.14) 

370.312 

(20.936) 0.003 

500.20 

(0.14) 

500.21 

(81.217) 0.002 

0.01 
177.441 

(0.14) 

177.121 

(57.473) 0.180 

202.64 

(0.14) 

202.235 

(85.21) 0.200 

0.03 
86.165 
(0.14) 

86.465 
(61.451) 0.348 

91.688 
(0.14) 

91.385 
(89.219) 0.330 

0.05 
56.517 
(0.14) 

56.333 
(65.413) 0.326 

58.835 
(0.14) 

58.635 
(93.151) 0.340 

0.07 
41.869 

(0.14) 

41.679 

(69.344) 0.454 

43.124 

(0.14) 

43.224 

(97.082) 0.232 

0.10 
30.005 

(0.14) 

30.105 

(73.307) 0.333 

30.641 

(0.14) 

30.545 

(101.09) 0.313 

0.20 
15.229 

(0.14) 

15.252 

(77.239) 0.151 

15.387 

(0.14) 

15.382 

(105.05) 0.032 
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TABLE III.  OPITMAL DESIGN PARAMITERS AND 
*

1
ARL FOR EWMA CHART 

0
 = 1 FOR MA(2) 

1
 

0 370ARL   
1  0 500ARL   

  b  *
ARL1

   b  *
ARL1

 

1.01 

1.03 

1.05 

1.07 

1.09 

1.10 
1.30 

1.50 

0.169 

0.169 

0.168 

0.168 

0.167 

0.167 
0.162 

0.157 

0.259 

0.258 

0.257 

0.256 

0.255 

0.255 
0.246 

0.238 

96.519 

39.520 

25.146 

18.596 

14.849 

13.519 
5.323 

3.636 

1.01 

1.03 

1.05 

1.07 

1.09 

1.10 
1.30 

1.50 

0.169 

0.169 

0.168 

0.168 

0.167 

0.167 
0.162 

0.157 

0.259 

0.258 

0.257 

0.256 

0.255 

0.255 
0.246 

0.238 

103.442 

40.604 

25.570 

18.821 

14.989 

13.633 
5.337 

3.642 

TABLE IV.  OPITMAL DESIGN PARAMITERS AND 
*

1
ARL FOR EWMA CHART 

0
 = 1 FOR MA(3) 

1
 

0 370ARL   
1  0 500ARL   

  b  *
ARL1

   b  *
ARL1

 

1.01 

1.03 

1.05 

1.07 
1.09 

1.10 

1.30 

1.50 

0.113 

0.113 

0.113 

0.113 
0.114 

0.114 

0.115 

0.115   

0.228 

0.229 

0.230 

0.231 
0.232 

0.232 

0.236 

0.236 

147.452 

66.708 

43.018 

31.721 
25.121 

22.756 

8.074 

5.130 

1.01 

1.03 

1.05 

1.07 
1.09 

1.10 

1.30 

1.50 

0.112 

0.113 

0.113 

0.113 
0.114 

0.114 

0.115 

0.115 

0.228 

0.229 

0.230 

0.231 
0.232 

0.232 

0.236 

0.236 

164.347 

69.908 

44.305 

32.404 
25.540 

23.097 

8.110 

5.143 
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