
International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume-2, Special Issue 2 (July-Aug 2014), PP. 48-52 

48 | P a g e  

NORMALIZED CLUSTERING ALGORITHM 

BASED ON MAHALANOBIS DISTANCE  
 

JENG-MING YIH 
Center of General Education,  

Min-Hwei College of Health Care Management 

Tainan, Taiwan 

 

YUAN-HORNG LIN 
Department of Mathematics Education, 

 National Taichung University of Education 

Taichung, Taiwan 

 
Abstract—FCM (fuzzy c-means algorithm) based on Euclidean 

distance function converges to a local minimum of the objective 

function, which can only be used to detect spherical structural 

clusters. The added fuzzy covariance matrices in their distance 

measure were not directly derived from the objective function. In 

this paper, an improved Normalized Clustering Algorithm Based 

on Mahalanobis distance by taking a new threshold value and a 

new convergent process is proposed.   

Index Terms—Normalized, Mahalanobis distance, Clustering 

algorithm.  

I. INTRODUCTION  AND MOTIVATION   

These fuzzy clustering algorithms can only be used to 

detect the data classes with the same super spherical shapes. To 

overcome the drawback due to Euclidean distance, we could try 

to extend the distance measure to Mahalanobis distance (MD). 

Fuzzy clustering is widely used in the pattern recognition 

field. The well-known ones, such as Bezdek’s Fuzzy C-Means 

(FCM) and Li et al’s Fuzzy Weighted C-Means (FWCM) [1,2], 

are based on Euclidean distance. 

Krishnapuram and Kim (1999) [3] pointed out that the 

Mahalanobis distance can not be used directly in clustering 

algorithm. Gustafson-Kessel (GK) clustering algorithm [4] and 

Gath-Geva (GG) clustering algorithm [5] were developed to 

detect non-spherical structural clusters. In GK-algorithm, the 

added fuzzy covariance matrices in their distance measure were 

not directly derived from the objective function. In GG 

algorithm, the Gaussian distance can only be used for the data 

with multivariate normal distribution. 

To add a regulating factor of Each covariance matrix to 

each class in the objective function, and deleted the constraint 

of the determinants of covariance matrices in the GK algorithm, 

the Fuzzy C-Means algorithm based on adaptive Mahalanobis 

distances, common Mahalanobis distance and standardized 

Mahalanobis distance, respectively (FCM-M, and FCM-CM), 

[8-12,16] were proposed, and then, the fuzzy covariance 

matrices in the Mahalanobis distance can be directly derived by 

minimizing the objective function.  

In this paper, not only replacing the common covariance 

matrix with the correlation matrix in the objective function in 

the FCM-CM algorithm but also replacing the threshold D 
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A new fuzzy clustering method, called the Fuzzy C-Means 

algorithm based on normalized Mahalanobis distance (FCM-

NM), is proposed. 

II. LITERATURE REVIEW 

Clustering technique plays an important role in data 

analysis and interpretation. It groups data into clusters so that 

the data objects within a cluster have high similarity in 

comparison to one another, but are very dissimilar to those data 

objects in other clusters.  

FCM is based on Euclidean distance function, which can 

only be used to detect spherical structural clusters. GK 

algorithm and GG algorithm were developed to detect non-

spherical structural clusters. However, GK algorithm needs 

added constraint of fuzzy covariance matrix, GG algorithm can 

only be used for the data with multivariate Gaussian 

distribution. A Fuzzy C-Means algorithm based on 

Mahalanobis distance (FCM-M) was proposed to improve 

those limitations of above two algorithms, but it is not stable 

enough when some of its covariance matrices are not equal. An 

improved Fuzzy C-Means algorithm based on Normalized 

Mahalanobis distance (FCM-NM) is proposed. The 

experimental results of two real data sets consistently show that 

the performance of our proposed FCM-NM algorithm is better 

than those of above algorithms. 

A. GK ALGORITHM 

Gustafson and Kessel (1979) extended the Euclidian 

distances of the standard FCM by employing an adaptive norm, 

in order to detect clusters of different geometrical shape 

without changing the clusters’ sizes in one data set. The 

objective function of GK algorithm is given in Equation 

(1),(2),(3) and (4).  
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B.  GG ALGORITHM 

Gath-Geva (GG) fuzzy clustering algorithm is an extension 

of Gustafson-Kessel (GK) fuzzy clustering algorithm, and 

also takes the size and density of clusters for classification 

(Hoppner et al, 1999)[7], Hence, it has better behaviors for 

irregular features. Probabilistic interpretation of GG 

clustering is shown by Equation (5)   
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 Gath and Geva (1989) [9] assumed that the normal 

distribution with expected value and covariance matrix is 

chosen for generating a datum with prior probability., 

satisfying  
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C. FCM-M Algorithm 

For improving the limitation of GK algorithm and GG 

algorithm, we added a regulating factor of covariance 
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matrix,  , to each class in the objective function, and deleted 

the constraint of the determinant of covariance matrices, in 

GK Algorithm as the objective function (1),(2),(3). We can 

obtain the objective function of Fuzzy C-Means based on 

adaptive Mahalanobis distance (FCM-M) as following [8-

12]; 
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Minimizing the objective function respect to all parameters 

in Equation (7), with the constraint (8), (9) we can obtain the 

following FCM-M algorithm; 

The steps of the FCM-M are listed as follows [8]. 

Step 1: Determining the number of cluster; c and m-value 
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Note that FCM is a special case of FCM-M, when 

covariance matrices equal to identity matrices [8]. 

D. FCM-CM Algorithm 

For improving the stability of the clustering results, we 

replace all of the covariance matrices with the same common 

covariance matrix in the objective function in the FCM-M 

algorithm, and then, an improve fuzzy clustering method, 

called the Fuzzy C-Means algorithm based on common 

Mahalanobis distance (FCM-CM) is proposed. We can obtain 

the objective function of FCM-CM as following: 
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Minimizing the objective function respect to all parameters 

in Equation (19) with the constraint (21), we can obtain the 

following FCM-CM algorithm. 

The steps of the FCM-CM are listed as follows [12] 
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Note that FCM is a special case of FCM-CM, when 

covariance matrices equal to identity matrices [12]. 

E. FCM-NM Algorithm 

In this paper, not only z-score normalizing for each feature in 

the objective function in the FCM-CM algorithm, but also 

replacing the threshold D where 
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 with the determinant value of the crisp correlation matrix, and 

then, the new fuzzy clustering method, called the Fuzzy C-

Means algorithm based on normalized Mahalanobis distance 

(FCM-NM) is proposed. We can obtain the objective function 

of FCM-NM as following: 
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The steps of the FCM-NM are listed as follows 

Step 1: Determining the number of cluster; c, m-value 
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Randomly choose the initial membership 

(0) , 1,2,..., , 1,2,...,iju i c j n  

 (0)

1

1, 1,2,...,ij

i c

u j n
 

   (41) 
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           
1
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1 1 1 1
i i
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i j i j

R z a z a 



   

  
   
 
   (43) 

    0 0
| |if R R then R I   (44) 

Step 2:   Find 

        
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1 1
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 
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 
   (45) 
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  (46) 
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 (48) 

Step 3: Increment k; until 

           
2 2 2

1 2 1 9 8

1 1 1

...
c c c

k k k k k k

i i i i i i

i i i

a a a a a a
    

  

        ,  

Step 4:  Classification strategy; 

If  

1
argmax

k

ij
i c

u t
 

 then 
jx is assigned to cluster t. 

Note that the threshold, | |R , of FCM-NM is a dynamic 

value rather than a constant, and the convergent process is 

different from all of before mentioned algorithms[16]. 

F. Clustering Accuracy 

In [17], C. Ding, T. Li, and W. Ping, use the clustering 

accuracy, as follows, 

 
,

1
max ,

s t

c s t

C L

A T C L
n

                         (49) 

where n is the number of objects in the data set, sC is the 

s-th cluster and tL is the t-th class,  ,s tT C L is the number of 

objects which belong to class t  and are assigned to cluster s. 

Accuracy computes the maximum sum of  ,s tT C L  for all 

pairs of clusters and these pairs have no overlaps. Accuracy, 

cA , is the percentage of the points that were correctly 

recovered in a clustering result. Generally, the grater the 

accuracy values the better the cluster performance. 

Threshold D In this paper, not only z-score normalizing 

for each feature in the objective function in the FCM-CM 

algorithm, but also replacing the threshold D where 

       0 0 0

1 1

0
i i

c n
m

ij j j

i j

D x a x a
 

                             (50)                                                                                               

III. EMPIRICAL ANALYSIS 

The data set from the University of California at Irvine 

(UCI) Machine Learning Repository [13,14] are used in the 

empirical study, The information about the data is shown in 

Table 1. 

TABLE I.  THE DETAILS OF THE USED DATASETS 

Datasets Attributes Classes 
Sample 

number 

Iris 4 3 150 

Wdbc 30 2 569 

 
The performances of FCM, GK, GG, FCM-M, FCM-CM, 

FCM-SM, and FCM-NM all with the fuzzifier m=2, are 

compared in these experiments. The results of FCM, GK, and 

GG are obtained by applying the Matlab toolbox developed by 

[15]. 

TABLE II.  THE ACCURACIES OF FIVE ALGORITHMS 

Algorithms Iris Wdbc 

GK 0.9000 0.7404 

GG 0.7649 0.7767 

FCM-M 0.9000 0.7978 

FCM-CM 0. 9279 0.9172 

FCM-NM 0. 9299 0.9183 
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FCM is based on Euclidean distance function, which can 

only be used to detect spherical structural clusters. GK algorithm 

and GG algorithm were developed to detect non-spherical 

structural clusters. However, GK algorithm needs added 

constraint of fuzzy covariance matrix, GG algorithm can only be 

used for the data with multivariate Gaussian distribution. A 

Fuzzy C-Means algorithm based on Mahalanobis distance (FCM-

M) was proposed to improve those limitations of above two 

algorithms, but it is not stable enough when some of its 

covariance matrices are not equal. An improved Fuzzy C-Means 

algorithm based on Normalized Mahalanobis distance (FCM-NM) 

is proposed. The experimental results of two real data sets 

consistently show that the performance of our proposed FCM-

NM algorithm is better than those of the FCM algorithms. In this 

paper, each cluster of data can easily describe features of 

knowledge structures[18,19]. 

The Mean clustering Accuracies of 100 different initial 

value sets of GK, GG, FCM-M, FCM-CM, and FCM-NM for 

these two Datasets were shown in TABLE II. From this table, we 

can find that the performance of GG algorithm always worse 

than FCM-NM for above two datasets. Although the 

performance of GK algorithm is better than which of GG 

algorithm in Iris dataset, but the performance of the former is 

worse than which of the later in Wdbc dataset. The performances 

of our proposed three algorithms, FCM-M, FCM-CM, and FCM-

NM are simultaneously better than which of GK and GG 

algorithm in two datasets. In other words, our proposed two 

algorithms, FCM-CM, and FCM-NM are better than GG 

algorithm and GK algorithm. Among our proposed two 

algorithms, the new algorithm, FCM-NM, has the best 

performance. In a word, FCM-NM algorithm is better than others. 

IV. CONCLUSIONS 

Clustering technique plays an important role in data 

analysis and interpretation. Fuzzy clustering is a branch in 

clustering analysis and it is widely used in the pattern recognition 

field. Fuzzy clustering algorithms can only be used to detect the 

data classes with the same super spherical shapes. To overcome 

the drawback due to Euclidean distance, we could try to extend 

the distance measure to Mahalanobis distance (MD). However, 

Krishnapuram and Kim (1999) pointed out that the Mahalanobis 

distance can not be used directly in clustering algorithm. 

Gustafson-Kessel (GK) clustering algorithm and Gath-Geva (GG) 

clustering algorithm were developed to detect non-spherical 

structural clusters. 

 In GK-algorithm, a modified Mahalanobis distance with 

preserved volume was used. However, the added fuzzy 

covariance matrices in their distance measure were not directly 

derived from the objective function. In GG algorithm, the 

Gaussian distance can only be used for the data with multivariate 

normal distribution. To add a regulating factor of each 

covariance matrix to each class in the objective function, and 

deleted the constraint of the determinants of covariance matrices 

in the GK algorithm, the Fuzzy C-Means algorithm based on 

Mahalanobis distance (FCM-M),was proposed, and then For 

improving the stability of the FCM-M clustering results, Replace 

all of the covariance matrices with the same common covariance 

matrix in the objective function in the FCM-M algorithm. 

Proper clustering number will be decided in advance and 

one student will be randomly selected from each cluster to 

describe features of knowledge structures. The proper number of 

cluster is 3 as Iris. 

In this paper, we use the best performance of clustering 

Algorithm FCM-CM in data analysis and interpretation. It groups 

data into clusters so that the data objects within a cluster have 

high similarity in comparison to one another, but are very 

dissimilar to those data objects in other clusters. Fuzzy clustering 

is widely used in the pattern recognition field. Hence each cluster 

of data can easily describe features of knowledge structures. 

Manage the knowledge structures of Mathematics Concepts to 

construct the model of features in the pattern recognition 

completely[20,21,22]. 

The well-known FCM is based on Euclidean distance 

function[23,24], which can only be used to detect spherical 

structural clusters. GK algorithm and GG algorithm were 

developed to detect non-spherical structural clusters. However, 

the former needs added constraint of fuzzy covariance matrix, 

the later can only be used for the data with multivariate 

Gaussian distribution. three improved Fuzzy C-Means algorithm 

based on different Mahalanobis distance, called FCM-M, FCM-

CM, and FCM-SM were proposed by our previous works. In 

this paper, a further improved Fuzzy C-Means algorithm based 

on a normalized Mahalanobis distance (FCM-NM) by taking a 

new convergent process is proposed. 

 The experimental results of two real data sets show that 

our proposed new algorithms have the best performance. 
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