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Abstract- Many traditional signal processing techniques and 

machine learning utilize shallow architectures which consist of 

a single layer of non-linear feature transformation. Examples of 

shallow models are nonlinear or linear dynamic models, 

conditional random models, maximum entropy models, markov 

hidden models, maximum entropy models, multilayer 

perceptron and kernel regression with only one hidden layer.  A 

property mutual to these shallow architectures models are 

simple architecture which consists of only one layer responsible 

for altering the basic input signals into a problem specific 

feature space, which we can’t observe. The deep learning 

paradigm tackles problems on which shallow architectures (e.g. 

SVM) are altered by the express of dimensionality. Some Part 

of a two stage method learning involving many layers of 

nonlinear processing a set of statistically substantial 

characteristics are automatically extracted from data. Deep 

learning method can be used in applications like remote sensing 

such as Land cover Classification, Detection of Vehicle in 

Satellite Images, Hyper spectral Image classification. 
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I. INTRODUCTION 

 

One of the important applications in Geographic Information 

System is classification of Land Cover in urban area. It is 

necessary for many purposes such as urban landscape pattern 

analysis, urban land management, urban planning and 

disasters monitoring. Remotely sensed data is using for land 

cover mapping in urban area for decades. Within many 

remote sensing systems, Synthetic Aperture Radar (SAR) is 

recognized as a strong resource for urban analysis, as it's less 

influenced by solar radiance or conditions of weather in 

comparison to optical sensors. Since more sporadic 

information could be collected in Multi polarizations, 

polarimetric SAR data which is used for Land cover 

classification increasingly [1]. By combining imaging hyper 

spectral remote sensing data and spectroscopy technology 

can get spectrally and spatially continuous data. Hyper 

spectral data are becoming an important tool for observing 

the surface of Earth [2] [3] and these are used in a deep array 

of applications. A general technology in these applications is 

the each pixel classification in hyper spectral data. If 

successfully used, the hyper spectral data can produce high 

classification accuracies and more specified class 

assortments [4]. Generally, Land cover classification 

methods and in hyper spectral classification, there are two 

types of approaches Non parametric and Parametric 

approaches. Parametric approaches including Maximum 

Likelihood Classifier, Minimum Distance Classifier and 

Expectation Maximization Algorithm usually need proper 

assumptions for distribution of data. For Multitemporal or 

Multisource data, the distribution is however difficult to 

model. On the other hand, Non Parametric approaches like 

Decision Trees, Genetic Algorithms, Artificial Neural 

Networks and Support Vector Machines are widely used in 

both classification. However, the performances of the non-

parametric approaches mainly depend on the selected 

features. As an advanced machine learning approach 

emerged in modern years, deep learning has been 

triumphingly applicable in the field of image classification. 

With deep architecture, approaches like Deep Belief 

Networks (DBN) [5] [6] can represent data with complex 

spatio-temporal statistical patterns. From above all approach, 

Deep Learning approach can automatically extract effective 

classification features, which is helpful for land cover 

mapping. For hyper spectral classification our work depends 

on applying Auto-Encoder which is based on deep 

architecture models, to learn deep features of hyper spectral 

data in an unsupervised method. Our methods exploit single 

layer Auto-Encoder and Multi-Layer stacked Auto-Encoder 

to learn shallow and deep features of hyper spectral data, 

respectively. In this paper, we acquaint deep learning-based 

feature extraction for hyper spectral image classification and 

land cover classification. 

II. HYPERSPECTRAL DATA CLASSIFICATION 

 

1. Deep Learning 

Deep learning contains a class of layers which try to step by 

step learn deep features of input data with deep neural 
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networks, typically more than three or four layers. The 

network is initialized first layer by layer via unsupervised 

training and then well-adjusted in a supervised manner. In 

this procedure, high level characteristics can be learned from 

low level characteristics, whereas the appropriate features 

can be developed for image classification in the end. 

According to some recent papers [7] [8], deep architecture 

can give better approximation than shallow architecture.  

Deep neural network architectures consist of deep belief 

networks [9], deep Boltzmann machines [10], Auto-Encoders 

[11], and stacked Auto-Encoder[12]. 

 

Fig .1  Single layer AE for hyper-spectral data classification [2]. 

The architecture determines a hidden feature “y” from input 

“x” by reconstructing it on “z”. Related parameters are 

showed in the network [16]. The training models are layer-

wise which have a group of alternatives such as restricted 

Boltzmann machines [13], pooling units [14], convolutional 

neural networks [15], Auto-Encoders and denoising Auto-

Encoders [11]. In this paper, we use one of the above deep 

learning architecture; Auto-Encoders used for hyper spectral 

data classification and choose Stacked Auto-Encoders as the 

corresponding deep architecture. 

1.1 Auto-Encoders: 

 

Auto-Encoders consist of visible layer of inputs, one layer of 

units which is hidden, one reconstruction layer and Fig 1 

shows activation function. In training mapping of the input 

 to the hidden layer takes place first and produces the 

output . The network related to this step is shown in 

Fig. 1 and is called an “encoder.” After that mapping is done 

by a “decoder”. A “decoder” produces an output layer. Size 

of output layer is same as input layer. Output layer is called 

as “reconstruction.” The values in reconstructed layer are 

denoted as . Mathematically, these two steps can be 

formulated as 

 y yy f W x b 
    

(1) 

 z zz f W y b 
    

(2) 

Where Wy  and Wz  denote the input to hidden and the 

hidden to output weights, respectively, by  and z
b  denote 

the bias of hidden and output units, and  .f  denotes the 

activation function. There are many alternatives for  .f  

such as sigmoid function, hyperbolic tangent, and rectified 

linear function. In our paper, the following constraint holds. 

          

'

y z
W W W 

    
(3) 

We have three groups of parameters remaining to learn: 

, ,
y z

W b b  

The goal of training is to minimize the “error” between input 

layer and reconstruction layer, i.e. 

    
, ,

arg min ,
w b by z

c x z 
 

     
(4)  

 ,c x z  stands for the “error,” which can be defined in many 

ways. Thus, the weight updating rule can be defined as 

(where    denotes learning rate) 

 cos ,t x z
W W

W



 
    

(5) 

 cos ,

y y
y

t x z
b b

b



 


   
(6) 

 cos ,

z z
z

t x z
b b

b



 


   
(7) 

After training the network, the reconstruction layer with its 

parameters is removed and the learned feature lies in the 

hidden layer, which is used for classification. During 

reconstruction, it only uses the information in hidden layer, 

which is encoded as features from input. If the architecture 

can recover original input perfectly from output that means it 

keeps full data of the input. So, stacking the encoders trained 

in this manner minimizes information loss. At the meantime, 

they maintain abstract and invariant information in deeper 

dx R

hy R

dz R
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feature. This is the main reason for choosing AE to extract 

deep features for hyper spectral data. 

 

1.2 Stacked AE: 

 

Stacked Auto-encoder can be formed by using multiple Auto-

encoders together. If we stacked input and output layers of 

Auto-encoders layer by layer then we get “stacked Auto-

encoder”. In first a 0th layer & 1st layer is there. Mapping of 

0th layer inputs to 1st layer feature in first layer. In training 

process every single Auto-encoder of stacked auto-encoder 

processed as above method. Every time training of 

subsequent layers of Auto-encoder takes place with the help 

of outputs of previous layer 

 

Fig .2   Instance of a SAE. It has five layers: one input layer, three hidden 

layers, and an output layer [16]. 

After this layer of training, the decoder of the third layer AE 

is useless and we are considering input to hidden parameters 

as weights between second & third layer  

1.3 Restricted Boltzmann machine: 

 

An RBM is a distinctive type of Markov random field consist 

of one layer of stochastic hidden units and one layer of 

stochastic visible or observable units. RBMs can be described 

as bipartite graphs as shown in Figure 3, In that graph all 

visible units are joined to all hidden units, and there are 

visible-visible or hidden-hidden connections not available. 

 

Fig .3  A RBM with i visible units and j hidden units [16]. 

In an RBM, the joint distribution  , ;p v h   over the visible 

units v and hidden units h, given the model parameters u, is 

defined in terms of an energy function  , ;E v h   of  

 
  exp , ;

, ;
E v h

p v h
z







   
(8) 

Where 
  exp , ;

v h

z E v h    is a normalization 

factor, and the marginal probability that the model allots to a 

visible vector  v  is 

    exp , ;
;

h

E v h
p v

z





 

   
(9) 

Energy Function for a Bernoulli (visible)-Bernoulli (hidden) 

RBM, is defined as 

 
1 1 1 1

, ;

I J I J

ij i j i i j j
i j i j

E v h W v h b v a h
   

     
  

(10) 

Where ijw  represents the symmetric communication term 

between visible unit iv  and hidden unit ,j ih b  and ja  are 

the bias terms, and I, J are the numbers of visible and hidden 

units.  We can efficiently calculate the conditional 

probabilities as,  

 
1

1| ;

I

j ij i j

i

p h v w v a 



 
   
 
 


   
(11)      

 
1

| ; ,1

J

i ij j i

j

p v h w h b 


 
 

  
 


   
(12)           

Where     1 / 1 expx x   . See a derivation in [25]. 

Where iv  takes real values and follows a Gaussian 

distribution with mean 
1

J

ij j i
j

w h b


   and variance one. We 

can alter real value stochastic variables to binary stochastic 

variables by using Gaussian-Bernoulli RBMs, Further this 

can be processed using the Bernoulli-Bernoulli RBMs. 

Taking the gradient of the log likelihood log  ,p v   we can 

obtain the regulation for the RBM weights as    

   
modi j i jij data el

w E v h E v h  
   

(13) 
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Where  i jdata
E v h the expectation is observed in the training 

set and  
mod i jel

E v h  is that same expectation under the 

distribution defined by the model. Unfortunately

 
mod i jel

E v h  is rough to compute that’s why we used 

contrastive divergence (CD) approximation to the gradient. 

Where  
mod i jel

E v h  is replaced by running the Gibbs 

sampler initialized at the data for one full step [17]. Careful 

training of RBMs is essential to the success of applying deep 

learning to practical problems. A practical guide of the RBM 

training is provided in [18]. 

 We have to train RBMs as a probabilistic model; the log-

likelihood criterion is used to maximize. This can be achieved 

with gradient ascent from a training set D as follows:    

   log
log

x D ij

p x
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
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,
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E u g
E
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     (14)

 

Where the first term is the expectation of 
 ,

ij

E x g

w




 
when the 

input variables are set to an input vector x and according to 

the conditional distribution p (h|x) the hidden units are 

sampled. The second term shows an expectation of 
 ,

ij

E u g

w



   

when u and g are sampled similarly to the joint distribution 

of the RBM p (u,g) and is uncivilized,. It can be almost same 

as Gibbs sampling: starting from any configuration  0 0,v h  

one samples 
th  according to  1| tp h v 

 and 
tv  

according to  | tp v h until the sample  ,t tp v h is 

distributed nearly sufficient to the target distribution  ,p v h

. In practice, We can reduced the number of step by starting 

the Markov chain with a sample from the training set of data 

and assuming that the model is not so far from target. This is 

the estimation on which the Contrastive Divergence (CD) 

learning algorithm is depends [19]. 

1.4 From stacked RBMs to deep belief networks: 

 

In an RBM, the hidden units are conditionally independent to 

the visible units, but there is not statistically independency. 

Stacking RBMs goal is learning and analysing these 

dependencies with other RBM. In the stack visible layer of 

every RBM is situated to the hidden layer of the previous 

RBM (see Fig. 4). In under mentioned the deep learning 

scheme, First RBM can train from the input data and after 

that sequentially other RBMs are trained. Stacking RBMs 

rises a range on the log-likelihood [20], which helps the 

expectation to reform the working of the model by adding 

layers. 

 

Fig .4   A stacked RBMs architecture [21]. 

A stacked RBMs architecture is a deep model. Patterns 

generated from the top RBM can be propagated back to the 

input layer using only the conditional probabilities as in a 

belief network. This setup is referred to as a Deep Belief 

Network [21]. 

III. DEEP BELIEF NETWORK 

 

Stacking a number of the RBMs learned layer by layer from 

bottom-up gives rise to a DBN. The DBN (Deep Belief 

Network) model was introduced by Hinton et al. in 2006 [5] 

and it is one of the broadly explored and used deep learning 

architectures [22] [23]. The DBN is consisting of many layer 

neural networks made up of several stacked Restricted 

Boltzmann Machines. As the building blocks of the DBN, an 

RBM contains layer of visible units v, and a layer of hidden 

units h, connected by symmetrically weighted connections, 

as shown in Fig. 5. 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

 www.ijtra.com Special Issue 31(September, 2015), PP. 111-116 

115 | P a g e  
 

 

Fig .5  A Restricted Boltzmann Machine with v visible units and j hidden 

units [24]. 

Assuming binary units, the RBM defines the energy of joint 

configuration of the visible and hidden units (v, h) as 

 
1 1 1 1

, ;

I J I J

ij i j i i j j
i j i j

E v h w v h b v a h
   

     
  

(15) 

Where ijw   represents the symmetric communication term 

between visible unit iv  and hidden unit ,j ih b   and ja  are 

the bias terms, I and J are the numbers of visible and hidden 

units. The probability of an exclusive configuration of the 

visible and hidden units is proportional to the negative 

exponentiation. As the building blocks of the DBN, an RBM 

can be treated as hidden units are proportional to the negative 

exponentiation of the energy function 

     , ,
, /

E v h E v h

v h

p v h e e
 

 
   

(16) 

Given a visible layer vector v of the RBM, the probability that 

hidden node h j  is activated can be calculated as

 
1

1|

I

j j i ji

i

p h v b v w


 
   
 
 


   

(17) 

where     1 / 1 expx x    the probability that visible layer 

node i
v  is activated, given hidden layer vector h, can be 

calculated in a similar way as follows 

 
1

1|

J

i i j ji

j

p v h a h w


 
 

   
 


   

(18) 

RBM training process can be described as follows. When 

random initialization of the weights and biases is done, 

iterative training on the RBM will perform on the training 

data. Given the training data on the visible nodes, i.e. iv , the 

hidden nodes states jh  are sampled according to Eq. (17). 

This is called the positive phase of RBM training. In the 

negative phase, a “reconstruction” of the visible nodes iv  is 

obtained according to Eq. (18). The positive phase is directed 

again to create 
'

jh  after that, we can update RBM weights 

and biases by Contrastive-Divergence (CD) algorithm [24] 

through gradient ascent, as follows: 

 ' '
j i jij

w v h v h  
    

(19) 

 '
i ii

a v v  
    

(20) 

 '
j jj

b h h  
    

(21) 

Where   Denotes the learning rate, and .  refers to the 

expectation of the sampled states. The DBN takes a layer-

wise learning strategy, in which RBMs are individually 

trained one after another in a bottom up fashion. For 

supervised classification, a softmax neuron network is placed 

on the top of the last RBM as a multiclass classifier. 

Therefore, the softmax classifier learns a joint model of the 

features extracted by the RBMs and the corresponding label 

of the samples. After training, the class label of a test sample 

can be predicted as the softmax's output by the forward 

propagation procedure in which the test data pass from the 

lowest level visible layer through multi RBM layers to the 

softmax output layer. 

IV. CONCLUSION 

 
We can classify hyper spectral image data. Hyper spectral 

deep features can be extracted by Stacked Auto Encoders 

(SAEs). It is shown that AE-extracted features are useful for 

classification, and it helps to increase the SVM accuracy and 

logistic regression while obtaining the highest accuracy when 

compared with other methods like PCA, KPCA, and NMF 

which are called as feature extraction method. 
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