
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 51-56

51 | P a g e

APPLICATION LEVEL CHECKPOINT-BASED

APPROACH FOR CRUSH FAILURE IN

DISTRIBUTED SYSTEM
Moh Moh Khaing, Phyu Phyu Tar

Department of Information and Communication Technology

University of Technology (Yatanarpon Cyber City)

Mandalay Division, Myanmar

Abstract— Fault-tolerance is an important and critical issue

in distributed and parallel processing system. Distributed system
consists of a collection of interconnected stand-alone computers
working together as a single, to produce complete result. If the
numbers of computing nodes are increased concurrently and
dynamically in distributed computing, it may have the many
changes to become crush failures. In this paper, we propose
application level checkpoint-based fault tolerance approach for
distributed computing. The proposed system uses Coordinated
Checkpointing techniques and Systematic Process Logging (SPL)
as global monitoring mechanism. The proposed system
implements on distributed multiple sequences alignment (MSA)
application using genetic algorithm (GA).

Index Terms— Coordinated Checkpointing, Genetic
Algorithm (GA), Systematic Process Logging (SPL), Multiple
Sequences Alignment (MSA)

I. INTRODUCTION

A distributed system is a collection of autonomous

computers linked by a network and equipped with software

that makes it appear to its users as a single coherent system

[12]. Distributed system facilitates sharing of resources among

geographically separate users, improve performance and

speed, and the participating systems, being heterogeneous can

each use the best tools for the assigned tasks. Many

computational nodes create problems with respect to

reliability, availability and usability. The sources of the

problems are node or crush failure for dynamic configuration

over extensive runtime.

A crash or node failure occurs when a computing node

prematurely halts, but was working correctly until it stopped.

An important aspect with node failures is that once the

computing node has halted, nothing is heard from it anymore.

An omission failure occurs when a computing node fails to

respond to a request. Several things might go wrong.

As the result of node failure, it may become more chances

to appear receive and send omission failure. In the case of a

receive omission failure, the computing node perhaps never

got the request in the first place. It may be the case that the

connection between a client and a server has been correctly

established, but that there was no thread listening to incoming

requests. Also, receive omission failure will generally not

affect the current state of the node, as the node is unaware of

any message sent to it. Likewise, send omission failure

happens when the server has done its work, but somehow fails

in sending a response [1].

Replication-based recovery approach, Fusion-based

approach, Checkpoint–based library compiler and System

level checkpointing approach can be used to tolerate crush

failures. But these approaches are based on operating system

level and place many replicas in distributed computing.

Moreover, these approaches are high overhead, and less

dynamic in distributed computing environments and that are

rarely used in [2], [3], [4]. In this system, the proposed fault

tolerance approach is implemented on the application layer

without using any operating system supports. In this approach,

all worker nodes (WNs) take local checkpoints at the state of

process and store all content of that checkpoint status as the

log file. Global checkpoint is taken upon the worker’s

connection by head node (HN). This approach can get the

portable checkpoint facilities and equally load balancing

mechanism. The proposed fault tolerance approach will be

implemented on distributed multiple sequences alignment

(MSA) application using genetic algorithm (GA).

This paper is organized as follows. Section II presents the

previous related works of fault-tolerance in distributed system

and parallel computing. Section III presents background

theory of proposed system and Section IV describes overview

of proposed system. Section V and section VI explains the two

processing phase of proposed system. Section VII shows the

implementation of proposed system in MSA application and

section VIII concludes the paper and advantages of this

proposed system.

II. RELATED WORKS

J.P. Walters [2] proposed replication-based fault tolerance

for MPI application. However, related issues are consistency

among such replicas and need to be addressed the overhead

carefully. Major problem of this system is number of backups

so that fusion based approach is appeared in. That is emerging

as a popular technique to handle multiple faults but requires

fewer backup machines than replication based approaches.

 In fusion based fault tolerance technique [3], [4], backup

machines are used which is cross products of original

computing machines. But there is high overhead during failure

recovery. Hence this technique is suitable if the percentage of

fault is low.

 S. Bansai [5] projected Dynamic Rank-Based fault

tolerance algorithm for load redistribution works as a

sequential restoration algorithm and reassignment algorithm

for distribution of failure nodes to least loaded computing

nodes works as a concurrent recovery reassignment algorithm.

 M.Tripathy [6] planned Hierarchical Checkpointing that

includes three types of checkpoint: Local disk, Mirrored,

Storage and three types of recovery for transient failure,

permanent failure and storage failure.

S.Kumar [7] anticipated that two phase coordinated

checkpointing algorithm which has first phase is each process

takes a tentative checkpoint and second phase is tentative

checkpoint was replaced by the permanent one. It takes the

waiting time both tentative checkpoint and permanent

checkpoint.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 51-56

52 | P a g e

III. BACKGROUND THEORY

A. Checkpointing Approach

Checkpointing technique has been used in distributed

system as fault tolerance mechanism. A checkpoint is a

snapshot of the current state of a process and saves enough

information in non-volatile stable storage. If the volatile

storage contents are lost due to process failure, one can

reconstruct the process state from the information saved in the

non-volatile stable storage.

Checkpoint-based technique can be divided into three

subcategories: (1) Asynchronous or Uncoordinated

checkpointing, (2) Synchronous or Coordinated checkpointing

and (3) Quasi-synchronous or Communication induced

checkpointing [8], [9], [10].

1) Uncoordinated Checkpointing: uncoordinated

Checkpointing allows each process the maximum autonomy in

deciding when to take checkpoints. The main advantage is

that each process may take a checkpoint when it is most

convenient. But there are several disadvantages. First, there is

the possibility of the domino effect, which may cause the loss

of a large amount of useful work, possibly all the way back to

the beginning of the computation. Second, a process may take

useless checkpoint that will never be part of a global

consistent state. Useless checkpoints incur overhead and do

not contribute to advancing the recovery line. Third, it forces

each process to maintain multiple checkpoints, and to invoke

periodically a garbage collection algorithm to regain the

checkpoints that are no longer useful. Fourth, it is not suitable

for applications with frequent output commits because it

requires global coordination to compute the recovery line. In

order to determine a consistent recovery line, all processes

record their dependencies among checkpoints during failure-

free operation.

2) Coordinated Checkpointing:

coordinated Checkpointing requires processes to

orchestrate their checkpoints in order to form a consistent

global state. Coordinated checkpointing simplifies recovery

and is not susceptible to the domino effect, since every process

always restarts from its most recent checkpoint. Also, it

requires each process to maintain only one permanent

checkpoint on stable storage, reducing storage overhead and

eliminating the need for garbage collection. However, there is

the large latency involved in committing output, since a global

checkpoint is needed before messages can be sent to outside

world. A straightforward approach to coordinated

checkpointing is to block communications while the

checkpointing protocol executes. A coordinator takes a

checkpoint and broadcasts a request message to all processes,

asking them to take a checkpoint. When a process receives this

message, it stops its execution, flushes all the communication

channels, takes a tentative checkpoint, and sends an

acknowledgment message back to the coordinator. After the

coordinator receives acknowledgments from all processes, it

broadcasts a commit message that completes the two-phase

checkpointing protocol. After receiving the commit message,

each process removes the old permanent checkpoint and

atomically makes the tentative checkpoint permanent.

3) Communication-Induced Checkpointing:

communication-induced checkpointing avoids the domino

affect while allowing processes to take some of their

checkpoints independently [13]. However, process

independence is constrained to guarantee the eventual progress

of the recovery line, and therefore processes may be forced to

take additional checkpoints. The checkpoints that a process

takes independently are called local checkpoints, while those

that a process is forced to take are called forced checkpoints.

Communication-induced checkpointing piggybacks protocol-

related information on each application message. The receiver

of each application message uses the piggybacked information

to determine if it has to take a forced checkpoint to advance

the global recovery line. The forced checkpoint must be taken

before the application may process the contents of the

message, possibly incurring high latency and overhead. It is

therefore desirable in these systems to reduce the number of

forced checkpoints to the extent possible. In contrast with

coordinated checkpointing, no special coordination messages

are exchanged in [11].

B. Systematic Process Logging

 Systematic Process Logging (SPL) which was derived

from a log-based method. The motivation for SPL is to reduce

the amount of computation that can be lost, which is bound by

the execution time of a single failed task. In case of a fault,

task duplication needs to be avoided. Depending on the timing

of the fault, this could result in a significant number of

duplicated nodes, since each duplicated task itself may be the

initiator of a significant portion of computation. In

implementation of SPL, duplication avoidance is achieved

using a unique and reproducible identification method of all

vertices in the graph.

IV. OVERVIEW OF PROPOSED SYSTEM

A. Design

The proposed system architecture includes only one head

node (HN) and (1....3) worker nodes (WNs). All nodes are

connected on local network and they compute their jobs

without sharing storage spaces and input/output streams. They

execute their jobs independently. Fig.1. shows the distributed

architecture of checkpoint based fault tolerance system.

Fig.1. Overview Design for the proposed Fault-Tolerance System

In this proposed architecture, global resources monitor

(GRM), and global checkpoint storage (GCS) are coded in

head node (HN) and local checkpoint (LC) and local

checkpoint storage (LCS) are coded in worker node (WN). HN

creates the global checkpoint by taking the local checkpoint of

each worker node. Global resource monitor (GRM) uses to

manage load balancing. Thus, it always checks and stores the

state and content of each worker node. GRM takes the

responsibility for failure detection and load balancing from

failed node to other running nodes. Workers’ conditions are

stored in log files as global checkpoint storage (GCS). In each

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 51-56

53 | P a g e

worker node, local checkpoint (LC) is placed and takes the

checkpoint of every alignment process and its contents

independently and periodically. Local checkpoint storage

(LCS) uses to store each worker node’s processing conditions.

B. System Flow

The proposed Checkpoint-Based Fault Tolerance System

has two Phases: (1) Checkpointing Phase and (2) Load

Balancing Phase. The system flow of the proposed system is

shown in Fig. 2.

Fig. 2. System Flow for the proposed Fault-Tolerance System

V. CHECKPOINTING PHASE

The proposed application level checkpoint-based approach

is applied at the application layer and does not use any other

operating system supports. In Checkpointing phase, there are

two process stages: Coordinated Checkpointing (CC) and

Systematic Process Logging (SPL). In CC stage, head node

(HN) performs global resource monitor (GRM) and worker

node (WN) makes local checkpoint (LC). In SPL stage, HN

takes global checkpoint storage and worker node acts local

checkpoint storage.

In this system, in coordinated checkpointing (CC), initial,

head node (HN) accepts the multiple input sequences. HN

selects one sequence from multiple input sequences and the

selected sequence is sent to each worker node. The selecting

and sending processes are doing until all input sequences are

done. Global resource monitor (GRM) from head node

records all workers’ connection and their processes. In

systematic process logging (SPL), HN stores workers’

conditions in log file. Moreover, according to store all

monitoring information of workers in log file, global

checkpoint storage (GCS) provides fault tolerance behavior

when one worker is crushed. Thus, in GCS, log file stores the

client number, IP address and port number, current status,

current time and duration time of between processes for every

worker.

Therefore, in CC, when worker node (WN) accepts the

input sequence, local checkpoint (LC) records worker’s

contents. Then worker calculates to form the aligned sequence

using genetic algorithm (GA). Every worker nodes (WNs)

applies the GA to produce aligned sequence. The multiple

sequences alignment (MSA) application using GA has four

main steps and the input sequence must pass these four steps

completely. The four steps are (i) Initial Population, (ii)

Generating and Selection the best population by calculating

the fitness of population (iii) Crossover and (iv) Mutation.

The WN first selects the number of initial population,

number of generation, number of crossover and mutation and

minimum number of gaps to be aligned sequence before

starting sequence alignment process. Then, the WN creates the

initial population using the given number of population size

upon the input sequence. The next step is selecting the best

population with best fitness and generates the new population

using the generation number and minimum gaps. The third

step is making the crossover operation of generated sequences

using the input crossover number and makes the mutation

operation using input mutation rate after crossover operation.

After the input sequence had passed through the four genetic

operators of MSA application, the aligned sequence is come

out as result. This aligned sequence is sent to the HN. In SPL,

each worker takes the local checkpoint (LC) and stores the

contents of processing aligned sequence as log file. In local

checkpoint storage (LCS), log file of WN stores the client

number, IP address and port number, process state, and current

time.

VI. LOAD BALANCING PHASE

Load Balancing Phase has the responsibilities for detecting

node failure, making decision and transferring jobs to another

available node. This phase proposes to solve above conditions

using global monitoring information of all workers from head

node (HN).

Global resource monitor (GRM) from head node records

all workers’ connection and their processes. Then, GCS stores

all monitoring information of workers as records in log file.

HN sends input sequence to each worker node at each time.

When worker node is crushed, head node gets crush message

and receives node failure report. The head node notices node

failure condition. It finds available node and makes decision

which node to transfer the job from crushed node using the

global monitoring information.

When all aligned sequences are received from every

worker nodes (WNs), HN combines the result and shows the

aligned sequences result to user.

VII. IMPLEMENTATION

A. Input Sequences for MSA

Multiple sequences alignment (MSA) application uses

DNA (Deoxyribonucleic Acid) sequences in medical field.

The DNA sequences are presented as FASTA format which

organizes the A, C, G, T nucleotides. These four kinds of

nucleotides is the basic unit of an organism and stands for

adenosine (A), cytosine(C), guanine (G) and thymine (T).

B. Multiple Sequences Alignment

Multiple sequences alignment (MSA) application helps to

design new protein or genes and it belongs to a class of

optimization problems with exponential time complexity,

called combinatorial problems. MSA can align different kinds

of genetic sequences such as DNA Sequences, Protein

Sequences.

MSA application refers to the problem of optimally

aligning two or more sequences with inserting gaps between

the genes. The objective is to get number of matching gene

symbols between the sequences according to use only

minimum gap insertions. Identical sub sequences are

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 51-56

54 | P a g e

eventually aligned in a one-to-one correspondence naturally;

gaps are not inserted in both sequences at the same position. In

the end, the sequences end up with the same size.

In this system, using distributed MSA, multiple sequences

(1…n) are accepted by head node (HN) as input and then each

sequence is sends to each worker node (WN). This process is

repeated until all input sequences are finished. All worker

nodes (WNs) concurrently align the input sequence using

genetic operators; generating population, selection, crossover

and mutation with inserting minimum gaps. The aligned

sequence result is sent by WN to HN and HN combines all

aligned sequences to become the new completed aligned

sequences and displays to the user. The following sequences

show the input DNA sequences for MSA and its output

aligned DNA sequences:

Input multiple DNA Sequences:

>seq1: AAGGAAGGAAGGAAGGAAGGAAGG

>seq2: AAGGAAGGAATGGAAGGAAGGAAGG

>seq3: AAGGAACGGAATGGTAGGAAGGAAGG

Output for aligned DNA Sequences:

>seq1:A-AGGA-AGGA-AGGAA-------GG-----AA-GAAGG

>seq2:------------AAGGAAGGAATGGAAGGAAGGAAGG

>seq3:----------AAGGAACGGAATGGTAGGAAGGAAGG

C. Experiments

The proposed system implemented on four personal

computers and one of them is used as head node (HN) and

remaining nodes are made as worker nodes (WNs). All WNs

use window operating system and these nodes are connected

with local area network.Java socket framework is used to

transfer the messages on local network.

 Initially, HN works runnning on local network at

global checkpoint. Then, HN accepts the input DNA

sequences and selects one sequence for each WN in Fig 3. The

global resource monitor (GRM) takes the checkpoint of

clients’ connection states such as running, accept, receive and

reject. It shows three worker nodes’ running state as shown in

Fig. 4. In running state, there are four conditions: Client type

to show worker number, IP address to show WN, Status to

show worker node’s conditions, Current Time to show system

time, Time Duration to show time within each client’s running

state to accept and receive state or running state to reject state.

Fig. 3. Preparing Input Sequence for Worker Node by Head Node

Fig. 4. Monitoring information by GRM

 When WN works running state at local checkpoint,

the WN accepts input sequence from HN and calculates that

sequence to form aligned sequence using genetic operators:

population, generation, and crossover and mutation rate. The

worker process is shown in Fig. 5. After calculation of genetic

algorithm (GA), the aligned sequence is sent to HN. The local

checkpoint (LC) records worker node’s conditions such as

accept and send. Local checkpoint storage (LCS) stores these

records in log file according to use “Save Log File” button.

Fig. 5. Sequence Alignment Process by WN

 When the aligned sequence is received by HN, the system

shows receiving information results from WNs as shown in

Fig. 6. In this system, therefore, global resource monitor

(GRM) demonstrates worker nodes’ conditions as shown in

Fig. 7.

Fig. 6. Receiving Aligned Sequence from WN by HN

Fig. 7. Monitoring Information of WN by GRM

If WN does not accept input sequence, HN receives crush

message "Client is crushed" as illustrate in Fig. 8. The global

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 51-56

55 | P a g e

checkpoint storage (GCS) detects failure condition and GRM

records this condition as reject state. The head node searches

available worker node by observing global resource monitor at

global checkpoint storage and makes decision which node to

transfer the job from crushed node in Fig. 9. After that, global

checkpoint storage stores all records from global resource

monitor as log file by using "Save Log File" Button.

Fig. 8. HN receives crush message from WN

Fig. 9. GRM detects failure and decides available WN for load balancing

GRM finds the available non-failure node to compute the

sequence from failed node according to the WNs current

condition.WNs’current condition are described in global

checkpoint monitoring information: Running, Accept and

Receive.When HN receives the crush report from one WN ,

this failed WN condition is recorded as Reject state by GRM

in global checkpoint storage. But,non-failure WNs are

continuously processing their input sequence to produce

aligned sequence. After non-failure WNs had computed the

sequence alignment , they sent the result aligned sequence to

HN. This condition is recorded as Receive state by GRM .

 Therefore , WNs that has the Receive state is said to be

transfer the job from failed node. GRM chooses available

node that has been displaying Receive state firstly among

other non-failure node and decides that node to transfer job

from failure node in Fig. 10.

Fig. 10. GRM chooses worker which get firstly Receive State

 After that the worker node again processing the alignment

process for failure node’s job and sends the result to HN.The

system receive the result from WN in Fig. 11.

Fig. 11. WN again processes MSA and sends the result to HN.

The whole system is finished all input sequences are

computed and display to the all aligned sequences by using

“Show Result” Button in Fig. 12.

Fig. 12. Show all aligned sequences

All system process are finished and the worker nodes are

stopped by clicking the “Exit” Button .And then, the whole

system is stopped when head node uses the “Stop Server”

Button.This system can operate within one hour period.

VIII. CONCLUSION

The proposed checkpoint-based fault tolerance approach

offers some advantages. While this system implements the

checkpoint on the application level, the checkpoint is taken in

alignment processing and does not need to support any

operating system. Using Coordinated Checkpointing and

Systematic Process Logging, it can avoid domino effect and

can reduce useless checkpoint. There is no need large storage

space because stored checkpoint records are automatically

deleted with the ability of checkpoint monitoring information.

This system improves user availability and system reliability

for MSA using global resource monitor (GRM) as load

balancing mechanism. This system can improve performance

and accuracy of distributed computing and it can reduce the

time and overhead cost.

ACKNOWLEDGEMENT

We are very grateful to our rector from University of
Technology (Yatanarpon Cyber City) and professors from
Department of Information and Communication Technology
(Technology University) for fruitful discussions during the
preparation of this paper.

REFERENCES
[1] G. Cao, “Introduction to Distributed Systems”, Department of

Computer & Engineering ,2009.

[2] J. P. Walters and V.Chaudhary, “Replication-Based fault

Tolerance for MPI Applications”, IEEE Transactions On Parallel

and Distributed Systems, volume 20, 2009.

[3] V. Ogale, B. Balasubramanian and V. K. Garg, “Fusion-based

Approach for Tolerating Faults in Finite State Machines”, IEEE

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 51-56

56 | P a g e

International Symposium on Parallel & Distributed Processing,

2009.

[4] V.K Garg, “Implementing fault-tolerant services using fused

state machines” ,Technical Report ECE-PDS-2010-001, Parallel

and Distributed Systems Laboratory,ECE Dept, University of

Texas at Austin ,2010 .

[5] S.Bansai, S.Sharma, “An Improved Multiple Faults

Reassignment based Recovery in Cluster Computing”, Journal

of Computing, Volume2, November 2010, ISSN 2151-9617.

[6] M.Tripathy, C.R.Tripathy, “A Hierarchical Shared Memory

Cluster Architecture with Load Balancing and Fault Tolerance”,

International Journal of Computer Applications ,Volume 25,

June 2011.

[7] S. Kumar, P. Kumar, “Hierarchical Non-blocking Coordinated

Checkpointing Algorithms for Mobile Distributed Computing”,

International Journal of Computer Science and Security (IJCSS),

Volume (3),2002.

[8] A. Khunteta , “Analysis of Checkpointing Algorithms” , (IJCSE)

International Journal on Computer Science and Engineering Vol.

02, No. 04, 2010.

[9] P.Kumar, R.Setiya, and P.Gahlan,”Checkpointing Algorithms

for Distributed Systems”, International Journal of Computing

Science and Communication Technologies, Volume 2, July

2009.

[10] L. Guoliang, C. Shuyu, Z. Xiaoqin, “A Non-blocking

Checkpointing Algorithm for Distributed Systems”,

International Journal of Digital Content Technology and its

Applications, Volume 5, July 2011.
[11] V. Shah, V. Kapadia , “Load Balancing by Process Migration in

Distributed Operating System” , International Journal of Soft
Computing and Engineering (IJSCE) ISSN: 2231-2307,
Volume-2, Issue-1, March ,2012.

[12] S. Prusty , “Checkpointing and Rollback Recovery in
Distributed Systems” , Department of Computer Science and
Engineering Indian Institute of Technology, Guwahati , April
2009

[13] http://en.wikipedia.org/wiki/Smith Waterman_algorithm

http://en.wikipedia.org/wiki/Smith%20Waterman_algorithm

