
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special, Issue 43 (March 2017), PP. 10-14

10 | P a g e

OPERATIONS ON FULLY HOMOMORPHIC

ENCRYPTED DATA ON CLOUD

1Sanket Vyapari, 2Shivani Tawde, 3Mitali Joshi, 4Achyut Pratap, 5Rashmi Dhumal
1,2,3,4 Computer Department, Mumbai University Terna Engineering College, Navi Mumbai, India

5 Assistant Professor, Terna Engineering College, Navi Mumbai, India
1sanketvyapari@gmail.com 2tawde.986@gmail.com 3mitalijoshi09@gmail.com

4aspratap6196@gmail.com 5rashmisalvi@gmail.com

Abstract—In a world where digitization of day to day

activities is increasing rapidly, the strain is on

professionals to provide the secure services & storing the

data in encrypted form on cloud. The need for cloud

security services is rising tremendously. However, there

are many loopholes in today's system by which data can be

deciphered/extracted and used by unauthorized person as

per their needs. With the growth in volume and experience

of cyber- attacks, ongoing attentions is applied to protect

personal information, companies, government, military,

corporations and other businesses who collect, process and

store a great deal of confidential information on cloud in

high volume. Data encryption is a basic solution for

providing confidentiality to sensitive data. However,

performing operations on encrypted data requires extra

overhead, since repeated encryption-decryption need to be

performed for every single operation on encrypted data.

Fully Homomorphic Encryption (FHE) is the head on

solution to solve this issue, since it enable to perform

computations directly on encrypted data without sharing

the secret key needed to decrypt the data. This paper will

include a survey of how FHE operation is performed by

using the Scarab library to overcome the confidentiality

problems of data stored on cloud.

Index Terms— Cloud, Fully Homomorphic Encryption

(FHE), Scarab library, Sorting, Quick sort.

I. INTRODUCTION

Cloud Computing is widely growing concept now-a days. The

cloud computing means where different services — such as

servers, storage and applications — are delivered to an

organization's computers and devices through the Internet [1].

The prominent actors in Cloud Computing are Cloud Provider

and Cloud User. Cloud Provider is the enterprise cloud

services. A Cloud User can vary from organisations,

educational institutes to individuals utilising the cloud services.

There is a necessity for security, integrity, confidentiality and

visibility with respect to the current cloud providers [2]. The

three cloud computing service models [3] are as follows:

Software as a Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS). The problems of third party

data security and securely providing computation become

increasingly prominent. There is the risk that personal

information sent to a cloud is often seen as valuable to

individuals with malicious intent. There are some security

issues in cloud computing such as data security, third-party

control, and privacy. If all data stored in cloud were encrypted

using traditional cryptosystems, this would effectively solve

the three above issues. Confidentiality of information in a

public cloud is a major concern, which is guaranteed by

suitable encryption information.

The common security issues of cloud computing

[4] can be divided into five main categories:

1. Availability: The data must be available whenever it is

required. This is one of the prime concerns of mission and

safety critical organizations.

2. Trust: When two parties are involved in a processing

then the trust can be described as follows: An entity A is said

to trust another entity B when entity A believes that the entity

B will behave exactly as expected and required. This comprises

cloud service provider to provide sufficient security policy that

guarantees the efficient use of activities.

3. Confidentiality: Data confidentiality in the cloud means

isolating the data of individual users from one another. It refers

to trusting that specific applications or processes will maintain

and handle the user’s data in a secure manner.

4. Privacy: Privacy is defined as the willingness of a user to

control the disclosure of private information, encrypted data

communication, and user identity management.

5. Integrity: Integrity is associated with software, hardware

and data and it monitor that these can only be manipulated by

authorised persons and by authorised processes.

However, for every processing on encrypted data, it should

be downloaded and decrypted in client side and after

processing it is further encrypted and uploaded to cloud. This

obvious need for repeated decryption encryption increases the

processing complexity and out-weigh the advantage of using

cloud resources. Since the computation is done in the client

end, the objective of utilizing large processing power at the

cloud-end is defeated and the ciphertext is continuously

exposed to the adversary. Hence one needs to make a

mechanism in which arbitrary algorithms (which are sequences

of instructions to solve a problem) can be executed over

encrypted data directly on the cloud.

Homomorphic encryption is defined as a form of

encryption which allows different types of computations to be

carried out on cipher text and to obtain an encrypted result that

when decrypted matches the result of operations performed on

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special, Issue 43 (March 2017), PP. 10-14

11 | P a g e

the plaintext. The aim of homomorphic cryptography is to

provide privacy of data in communication and storage

processes, such as the ability to delegate computations to

untrusted parties.

Figure 1: An example of Homomorphic Encryption

The main categories of homomorphic encryption

schemes[5] are : Somewhat Homomorphic Encryption,

Partially Homomorphic Encryption (PHE) and Fully

Homomorphic Encryption (FHE) schemes.

-Somewhat Homomorphic Encryption schemes allow a

specific class of functions to be evaluated on

ciphertexts. Usually this scheme supports an arbitrary

number of one operation but only a minimum number of

second operation.

-Partially Homomorphic Encryption (PHE) algorithms

support either adding or multiplying encrypted ciphertexts, but

not both operations at the same time.

-But in Fully Homomorphic Encryption (FHE) Scheme

supporting multiplication and addition in the same time,

correspond to AND and XOR in Boolean algebra.

FHE goes a further step and provides an effective primitive

to perform arbitrary operations on encrypted data. With the

support of FHE, cloud can evaluate any functions on encrypted

data without having access to the secret key and without

knowing the result.

Figure 2. Applying FHE to secure cloud data

The security issues of data stored in cloud can be solved by

using Fully Homomorphic Encryption (FHE) schemes. To

secure it, the data should be encrypted with FHE before being

sent to the cloud. First, the user login and uses the key-

generation provided by the server to generate the secret key,

the user is the only holder of this secret key. Then, the user

encrypts the data that wants to send it to the cloud. When the

user want the server to execute some computations on these

encrypted data (such as add), he can send encrypted request to

the cloud server. The server performs the required operations

and sent the encrypted result to user. Finally the user decrypt

the data with his secret key to retrieve the correct result. Figure

2 illustrates the process of using FHE to cloud computing[5].

II. LITERATURE SURVEY

In [1], the author proposes cloud security through the trusted

third party mechanisms and by implementing trusted third

party model of network security within the cloud architecture.

It also proposes network access security model in the cloud

computing so that cloud services can be protected from

information access threats and services threats.

In [2], the author develops a model on cloud computing, that

accepts inputs in encrypted format and then perform

processing to satisfy the client query without being aware of

its content, whereby the retrieved encrypted data can only be

decrypted by the client who sends the request.

In [3], the author presents a description of security problem in

cloud computing and use of FHE scheme to provide solution

for this difficulty. The paper presents a new technique of

Homomorphic Encryption that provides security to the private

data and also provide mechanisms for searching or processing

encrypted data. In [4, the author deals with the use of

Homomorphic encryption for encrypting the user’s data in

cloud server and also executes required computations on this

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special, Issue 43 (March 2017), PP. 10-14

12 | P a g e

encrypted data. The paper also analyses some of the existing

Homomorphic encryption schemes like DGHV, Gen10, SDC

and discuss the use of the most efficient SDC scheme, to

secure cloud computing data.

In [5], the author discusses the issues involved in translating

the variable definitions, instruction executions, handling of

loops and terminating conditions when the algorithms handle

encrypted data and encrypted controls. The paper provides for

translating basic operators like bitwise, relational and

arithmetic operators which are used for implementation of

algorithms in any high level language like C.

In [6], the author provides implementation of different

algorithms that sort data encrypted with FHE scheme that are

based on Integers. The complexities of sorting algorithms on

encrypted data using Insertion Sort, Bubble Sort, Odd-Even

Merge sort and Bitonic Sort are analyzed.

In [7], the author presents a FHE scheme which has both

relatively small key and ciphertext size. The scheme has small

message expansion and key size than Gentry’s original

scheme. The proposal allows efficient FHE over any field of

characteristic two.

In [8], this paper relates the ability to search in encrypted

database to a chosen plaintext adversary and develop a

technique for performing search on array encrypted with FHE.

It shows methods to perform sorting based on comparison

over encrypted data. It also presents several new data

structures like encrypted array with encrypted index,

encrypted stack and accompanying push and pop

operations to realize recursive programs over encrypted

data. The author proposes a two stage sorting method called as

as Lazy sort with reduced recrypt operation. The author also

addresses Chosen Plaintext Attack (CPA), which is feasible

due to publically available encryption key.

In [9], the author presents the security issues that affect cloud

computing and proposes the use of Homomorphic encryption

as a remedy for dealing with these serious security concerns.

In [10], the author propose the first fully Homomorphic

encryption scheme that solves an universal problem in

cryptography. The paper includes discussion on a somewhat

Homomorphic “boots trappable" encryption scheme that

works when the function f is the scheme's own decryption

function. The author shows how, through boot trappable

encryption gives FHE.

In [11], the author addresses the possibility of applying the

recently discovered FHE schemes to sort encrypted data. The

paper shows how to choose the number of Recrypt operations

that results in an almost sorted array and develops a two-stage

sorting called LazySort. It also includes more advanced

searching techniques such as phrase search.

III. METHODOLOGY

The main objective of this paper is to investigate how to

perform arbitrary operations on FHE cloud data. The Smart-

Vercauteren FHE scheme[6] has been followed to develop the

operations. Scarab library is used for implementing basic FHE

operations. In this section, we first provide a brief overview of

FHE scheme and few words on scarab library. Further we

discuss various operations that can be performed on encrypted

data using scarab library.

a) Brief Overview of a FHE scheme

 A public key FHE scheme ξ : M→C is described by a

tuple of four polynomial time algorithms i.e.

 ξ = (KeyGen, Enc, Dec, Eval)

where KeyGen, Enc, Dec denote the key generation,

encryption and decryption functions of ξ respectively. Eval is

the evaluation algorithm used for computation on encrypted

data. This algorithm takes as input a polynomial expression P

and a set of ciphetexts c ={C0,C1,...,Cn} which are needed

to compute P [7]. The input output of Eval satisfies following

equation:

 Dec(Eval(P, c, pk), sk) = P(Dec(c, sk)) (1)

In the above expression pk denotes keys that are public, like

encryption key and sk denotes private or decryption key which

is secret and known only to the generator of the keys. For the

sake of brevity, we omit mentioning these keys in our work

unless it is essential to use them. To illustrate Eval, consider

polynomial expression P(X, Y) = X + Y which adds two

ciphertexts X and Y and results in addition of corresponding

plaintexts. According to Equation (1), for ciphertext inputs (A,

B), we have

 Dec(Eval(P, A, B)) = Dec(P(A, B))

 = P(Dec(A) + Dec(B))

b) Smart-Vercauteren FHE scheme

The Smart-Vercauteren FHE scheme [8] consists of four

algorithms:{KeyGen, Enc, Dec, ReCrypt} parametrized by

three values {N, η, µ } which are typically taken as {N,2√N,

√N}. This scheme supports two operations :{Add, Mul}.

KeyGen():

Set the plaintext space to be Ƥ = {0, 1}.

Choose a monic irreducible polynomial

F(x) ∈ [x] of degree N.

Repeat until p is prime.

• S (x) ← R B ∞ ,N(η/2).

• G(x) ← 1 + 2.S (x).

p ← resultant(G(x), F(x)).

D(x) ← gcd(G(x), F(x)) over Fp[x].

Let α ∈ Fp denote the unique root of D(x).

Apply the XGCD-algorithm over Q[x] to obtain

ℤ(x) = ∑𝑁−1 𝑧�𝑥� ∈ Z[x] such that

Z(x).G(x) = p mod F(x).

B ← z0 (mod 2p).

Generate s1 uniformly random integers Bi in [−p,.,p] such that

there exists a subset S of s2

elements with ∑�∈𝑆 𝐵� = B over the integers.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special, Issue 43 (March 2017), PP. 10-14

13 | P a g e

Define ski = 1 if i ∈ S and 0 otherwise. Only s2 of

the bits {ski} are set to 1.

Encrypt the bits ski = 1 under the encryption Operation to

obtain ci = Enc(ski, pk).

The public key is (p,α, s1, s2, { ci, Bi }𝑠1 and the

private key is sk = (p, B).

Enc(M,pk): Dec(c,sk):

1. Parse pk as (p,α). 1. Parse pk as (p, B).

2. if M ∉ {0, 1} abort. 2. M ← (c − ⌊c.B/p⌋).

3. R(x) ← R B∞, N(μ/2) . 3. Output M.

4. C(x) ← M + 2.R(x).

c ← C(α) (mod p).

Output c.

Add(c1, c2, pk): Mul(c1, c2, pk):

1. Parse pk as (p,α). 1. Parse pk as (p,α).

2. c3 ← (c1+c2)(mod p). 2. c3 ←(c1.c2)(mod p).

3. Output c3. 3. Output c3.

c) Scarab Library

Scarab library is an implementation of a FHE scheme using

large integers [13]. Hence, this work is more practical in case

of applying FHE to real applications. Scarab library is

comprised of sequences of specific mathematical and logical

manipulation by using arithmetic, logical and bitwise

operators. Helping libraries required for implementing scarab

library are the GNU Multiple Precision Arithmetic Library

(GMP) [14] for large integers and Fast Library for Number

Theory (FLINT) [15].

d) Operations on FHE

This section shows how basic arithmetic operations like

addition, multiplication and swapping can be realized by the

existing Fully Homomorphic primitives present in Scarab

library.

FHE add: The FHE_add function present in Scarab library

performs addition of two encrypted bits using bitwise XOR

operation. It discards the carry result.

Example: Let X and Y be two ciphertext integers generated by

performing FHE_enc on integers x, y respectively where x=0,

y =1 and pk is the public key generated by FHE_keygen

function. FHE_add function will take X, Y and pk as input

and will return the addition of X, Y say Z such that

dec(Z)=1.Carry is discarded if any.

FHE mul: The FHE_mul function present in Scarab library

performs bit-wise multiplication of ciphertexts using AND

operation.

Example: x=0, y =1, X=enc(x), Y=enc(y)

FHE_mul function will take X, Y and pk as input and will

return the multiplication of X, Y say Z such that dec(Z)=0.

FHE halfadd: This function performs addtion of two encrypted

bits with carry out.

Example: x=1, y =1 , X=enc(x), Y=enc(y). FHE_halfadd

function will take X, Y and pk as input and will return the

addition of X, Y say Z such that dec(Z)=0 and carry generated

say c_out where dec(c_out)=1.

FHE fulladd: This function performs addition of ciphertexts

with carry in and carry out.

Example: x=1, y =1, X=enc(x), Y=enc(y).

FHE_fulladd function will take X, Y, pk and c_in as input

where c_in is the carry generated from previous

FHE_full add operation. This function forwards the carry

generated, for that we have to set c_in = c_out.

Output will be the addition of X, Y say Z such that dec(Z)=0

and dec(c_out)=1.

 FHE swap:

FHE_swap function is implemented using basic

FHE_add, FHE_suband FHE_mul operations of

scarablibrary. It is uesd to swap two ciphertext values.

To swap two ciphertexts a and b, first subtraction of a and b

using arithmetic based on 2's compliment is perfomed. Most

Significant Bit of subtraction result is stored in β. According

to bit-wise arithmetic, the value of β is 1 if the subtraction

result is negative and 0 otherwise.

For swapping a and b using MSB β following steps are

followed [9]:

1. β =MSB[a + (2's compliment of b)]

2. temp = β * a + (1 − β) * b

3. b = (1 − β) * a + β * b

4. a = temp

FHE SWAP circuit takes two ciphertext integers A, B as input

and return another pair of ciphertext (X, Y). Here Dec(X) ≤

Dec(Y) assuming sorting is performed in ascending order.

Conditional FHE_swap function plays an important role in

implementing comparison based sorting technique.

This paper proposes an approach to implement one of the

comparison based sorting technique that is iterative quick sort

as discussed below. To sort an array of n elements using

Quick sort, an element called pivot is selected from the array.

Then divide the array such that the elements smaller than the

pivot are in the left partition and the elements greater than the

pivot are in the right partition. Similarly the pivot element is

recursively selected for the sub-arrays with smaller values and

greater values to produce a sorted array.

 Algorithm 1:

FHE quickSort

Input: lower index l, higher index h, encrypted arrayenc_arr,

public key pk

1. i= l-1

2. for j← l to h-1 do

3. if enc_arrj<= enc_pivot

4. i=i+1

5. FHE_swap(enc_arri , enc_arrj, pk)

6. FHE_swap(enc_arri+1 , enc_arrh, pk)

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special, Issue 43 (March 2017), PP. 10-14

14 | P a g e

In above method, initially higher index element is selected as

pivot. FHE_quickSort function swap the elements to its

correct position in the array. It also returns the new pivot

element index to FHE_QS_Partition function given below.

FHE_QS_Partition is an iterative approach to divide the array

in subparts.

Algorithm 2: FHE_QS_Partition

Input: lower index l, higher index h, encrypted array

enc_arr

1. mpz_t enc_arr[h - l + 1];

2. mpz_t var = -1;

3. enc_arr[++var] = l;

4. enc_arr[++var] = h;

5. while (var >= 0)

6. h = enc_arr [var--];

7. l = enc_arr [var--];

8. mpz_t p = FHE_Partition(enc_arr, l, h);

9. if (p-1 > l)

10. enc_arr [++var] = l;

11. enc_arr [++var] = p - 1;

12. if (p+1 < h)

13. enc_arr [++var] = p + 1;

14. enc_arr [++var] = h;

CONCLUSION

Securing a public cloud is big concern in today’s era. To

preserve the privacy of data, the user must encrypt data before

being sent to the cloud. Fully Homomorphic Encryption is the

best solution to secure the client data in cloud computing

because its schemes enable to perform arbitrary computations

on encrypted data without decrypting. This paper discusses the

FHE scheme and its implementation using scarab library. The

work also addresses performing various operations on

encrypted data using Scarab library. Our ongoing work is

focused on realization of iterative quick sort approach

discussed in this paper.

REFERENCES

[1] Kollati Vijaya Kumar and CH.V.T.E.V.Laxm, “Trusted

Third Party in Cloud Architecture to Implement Security

Issues”, International Journal of Advanced Research in

Computer Science and Software Engineering Volume 3,

Issue 7,July2013 ISSN: 2277 128X

[2] Shashank Bajpai and Padmija Srivastav, “A Fully

Homomorphic Encryption Implementation on Cloud

Computing”, International Journal of Information &

Computation Technology ISSN 0974-2239 Volume 4,

Number 8 (2014), pp. 811-816

[3] P. Mell, T. Grance, "The NIST Definition of Cloud

Computing," National Institute of Standards and

Technology, U. S. Department of Commerce, (2011).

[4] Sweta Agrawal, Aakanksha Choubey, “Survey of Fully

Homomorphic Encryption and Its Potential to Cloud

Computing Security”, International Journal of Advanced

Research in Computer Science and Software Engineering

Volume 4, Issue 7July, 2014

[5] Ihsan Jabbaran and Saad Najim ,“Using Fully

Homomorphic Encryption to Secure Cloud Computing”,

Internet of Things and Cloud Computing Volume 4, Issue

2 , April 2016, Pages:13-18

[6] Ayantika Chatterjee and Indranil Sengupta. “Translating

Algorithms to handle Fully Homomorphic Encrypted Data

on the Cloud”. IEEE Transactions on Cloud Computing.

DOI 10.1109/TCC.2015.2481416.

[7] Emmadi, Nitesh, Gauravaram, Praveen, Narumanchi,

Harika, & Syed, Habeeb (2015) “Updates on sorting of

fully homomorphic encrypted data”. In 8th IEEE

International Conference on Cloud Computing, June 27 -

July 2,2015, New York, USA. (In Press)

[8] Nigel Smart and Fre Vercauteren. Fully homomorphic

encryption with relatively small key and ciphertext sizes.

In Public Key Cryptography - PKC 2010, pages 420–443.

Springer LNCS 6056, 2010.

[9] Chatterjee, A. & Sengupta, I. (2015). “Searching and

Sorting of Fully Homomorphic Encrypted Data on

Cloud”.

[10] Aderemi A. Atayero, Oluwaseyi Feyisetan, "Security

Issues in Cloud Computing: The Potentials of

Homomorphic Encryption", Journal of Emerging

[11] Trends in Computing and Information Sciences, (2011).

[12] C. Gentry, “A fully homomorphic encryption scheme,”

Ph.D. dissertation, Stanford University, 2009,

crypto.stanford.edu/craig.

[13] A. Chatterjee, M. Kaushal, and I. S. Gupta, “Accelerating

sorting of fully homomorphic encrypted data,” in

Proceedings of the 14th International Conference on

Cryptology in India, ser. INDOCRYPT ‘13, 2013

(Accepted).

[14] https://github.com/hcrypt project/libScarab.

[15] T. G. et al., “GNU multiple precision arithmetic

library:https://gmplib.org/.”

[16] W. H. et al., “Flint: Fast library for number

theory:http://www.flintlib.org/authors.html.

