
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 28 (August, 2015), PP. 7-11

Page | 7

CUBE BASED RSA ANALYSIS AND

OPTIMIZATION

1Masumeh Damrudi*, 1,2Kamal Jadidy Aval
1Department Department of Computer Science,

 Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
2Department of Computer System and Communication,

 Faculty of Computing, Universiti Teknologi Malaysia,

81310, Skudai, Johur Bahru, Malaysia
*m.damrudi@gmail.com

Abstract— Abstract

One of the important algorithms in public key cryptography is

RSA. The RSA is expensive due to using modular exponentiation

for greater keys. A parallel method is presented in previous

work. The proposed algorithm (CRSA), employs hypercube

interconnection network to make RSA parallel. This paper

presents the optimization of CRSA along with simulation results.

The results of the conducted simulations indicate that this

method requires less time to carry out encryption and decryption

process compared to the original RSA and the other existing

parallel approaches in the literature. These results are evaluated

mathematically using time complexity.

Index Terms— Parallel processing; cryptography; RSA;

hypercube; pipeline; optimization

I. INTRODUCTION

Security takes the main role of transferring confidential

information such as the passwords of master cards through

unreliable networks. The first way to overcome this issue is

cryptography. The RSA is a safe algorithm for public key

cryptography while using long keys [1]. The most time

consuming part of RSA is modular exponentiation [2]. A new

approach using hypercube interconnection network is

presented in the previous work. In this paper, the optimization

of newly proposed CRSA (Cube based RSA), is compared to

the Bielecki and Burak[3], CRT[4], Montgomery[5], and the

binary [4]as an accepted method, in terms of the number of

multiplications and execution time.

The rest of this article is organized as follows. Firstly, we

describe the pipelining of the CRSA. Then, the optimization of

this work is explained. Afterwards, mathematical analysis is

discussed. The simulation results are explained in section 5.

Finally, the conclusion of the work is drawn.

2. Pipelined CRSA

CRSA can be applied as a coprocessor for embedded

systems, for example, wireless sensor nodes, which require

more speed to transfer information. Enhancing CRSA,

pipelining mechanism is employed to achieve higher

throughput. In the pipelined variation of CRSA, Processor

Elements drastically decrease the latency between data

elements [6]. The CRSA for two cubes is presented in Fig. 1.

 Fig. 1 CRSA algorithm on hypercube architecture

Considering the encryption as Ci=mi
e mod n where i is the

block number, in CRSA, computing Ci should be finished

before the Ci+1 starts to be computed. In this enhanced

approach, when the results of current operations are sent to the

next level in hypercube, the computation for the following

ciphertext are started in this level. In principle, a new operation

can be initiated with this frequency. Even though previous ones

are still in pipeline and the cipher texts are not ready yet. In the

following, the assumptions are the same as the assumption of

CRSA.

The original idea illustrated in Fig. 1 can be improved more

using pipeline mechanism. The pipeline phases are shown in

the following figures.

http://www.ijtra.com/
mailto:*m.damrudi@gmail.com

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 28 (August, 2015), PP. 7-11

Page | 8

(a) (b)

(c) (d)

(e)

Fig. 2 Steps of pipelining in CRSA

The number of levels depends on the number of cubes in

hypercube. However, the number of nodes can be more or less

but not less than eight. Number of nodes should follow a

hypercube rule, where the number of nodes is dividable by

eight. In addition, a processor element is added as the

coordinator of the first operation. Using more nodes, the more

parallelization and pipeline levels will be gained. The volume

of operations at the coordinator will be decreased by the

increase of cubes in the hypercube, which leads to less

execution time. There is always a tradeoff between the number

of processor elements, the data size and key length.

In the so called example, PEs indexed 1, 3, 4, 5, 6, 8, 9, 10,

and 12 perform one MulMod operation while the others do two

MulMod except PEs 0 and 2 do not perform any MulMod, and

PE 7 performs three multiplications. The numbers of MulMod

in PEs differ according to their level and position. Although the

PEs are different, the PEs in each level are equal, which means

PEs of each level will terminate their operation at the same

time. Based on mentioned facts, the PEs of levels two and three

perform one MulMod, which means T2= T3 .

The first level of cube and the coordinator are considered

first pipeline level together, and their execution time depends

on the eo. This architecture is heterogeneous that means the

processor elements of the first and second level are different

from the other process elements as described in below. The

processor element known as coordinator must be more

advanced than the others and the processor elements, which

need more than one MulMod are more advanced than the other

PEs. Knowing these facts, the difference between the execution

time of these processor elements and the others is very small.

As mentioned above, the coordinator can be the CPU of the

embedded system, and the hypercube part can be used as a

coprocessor. Therefore, for the execution time on all levels, we

have:

T1 T2 = T3 T4 T5

Using pipelining, as its stages are clarified in the Fig. 2, the

throughput of parallel approach with pipelining will be about

five times of the throughput of parallel approach for a

hypercube with 16 nodes. When C1 is computed, calculation of

C6 will be started as a new block; whilst in the CRSA, when C1

is computed, calculation of C2 will be started as the next block.

Th is defined as throughput in the subsequent equations.

Tpipelined parallel1/5 TmainCRSA

Thpipelined parallel5ThmainCRSA

It should be considered that if the number of processor

elements increases, the throughput of pipelining will increase

too. Assuming Nc as the number of cubes in hypercube, the

relation of the throughput for the pipelined parallel approach

and the throughput for original CRSA parallel approach is as

following:

Thpipelined parallel=(Nc+3) ThmainCRSA

Applying this enhancement, all processor elements are in

use all the time computing cipher texts. In contrast, in the main

CRSA, at each time slice, just one level of the processor

elements was in use doing the computation, and the others

were idle. Pipelining mechanism provides appropriate

distribution of the work load among resources and improves

throughput.

 C5

 C4

 C3

 C2

 C1

http://www.ijtra.com/

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 28 (August, 2015), PP. 7-11

Page | 9

3. Optimization of CRSA

Although the main method of CRSA with pipelining has

admissible results, we have improved and optimized it to

increase efficiency as well as decreasing the area, which is one

of the most important factors in energy, and size limited

systems like battery-powered sensor nodes. The main CRSA

has some nodes, which are performing the same task and

producing the same results during execution of the algorithm.

Knowing this, the results of some PEs can be employed instead

of the others with the same results. These redundant PEs can be

eliminated in the architecture. By the increase in the number of

cubes, the redundant PEs will be increased where applying

optimization reduces the growth rate of the architecture.

Considering two cubes in a hypercube, the PEs which are

doing the same operation are marked with the same shape in

Fig. 3 (a). Fig. 3 (b) illustrates the nodes, which can be

eliminated and finally, the nodes that can be eliminated from

the hypercube to optimize the algorithm are omitted in Fig. 3

(c). It should be considered that the way processor elements are

connected is not changed and only the connections to the

eliminated nodes are removed from the architecture. This

elimination leads to a simpler architecture and smaller area

usage. The eliminated PEs do not include the ones playing the

role of connecting two cubes. If the level of parallelizing is

more than five, the number of eliminated PEs will increase.

(a) (b)

(c)

Fig. 3 Optimization of CRSA using two cubes with 16

PEs

The elimination decreases the size of the hypercube in Fig.

3 from 16 to 12 PEs. The efficiency of the parallel approaches

is measured using efficiency factor, which is given as E=S/P

where P and S are the number of processor elements and

speedup respectively [7-9]. Assuming the number of PEs as 16

like the example in Fig. 3, employing optimization the

efficiency of the algorithm will be increased from S/16 to S/12.

Taking into the general form, the efficiency of main CRSA is

E=S/8Nc where Nc is the number of cubes in the hypercube.

Optimizing the CRSA, the efficiency of optimized CRSA is

Eop=S/6Nc.

4. Mathematical analysis

Along with the throughput and efficiency, which are

common parameters to analyze the architectures, the number of

multiplications of an RSA method is known as a useful

parameter to compare the results [10, 11]. The number of

multiplications for binary as an accepted method is k-1, 3/2(k-

1) and 2(k-1) in the best, average, and worst case respectively

where k is the number of bits of the exponent [4, 11, 12].

Let Nc be the number of cubes in hypercube, so the power

of A and B in equations 17 and 18, will be divided into the

number of PEs, which

is . Thus the

number of multiplications of the coordinator for the best case

is:

k'=(k-1)-log

From mathematical point of view, we have:

Therefore,

k' = (k-1)-log

k' = (k-1)-log

The calculation of the total number of multiplications for

optimized hypercube is described below. Considering two

cubes in the architecture, PEs indexed 1, 3, 4, 5, 6, 8, 9, 10, and

12 perform one MulMod while the others do two MulMod

except PEs indexed 0 and 2, which do not perform any

MulMod and PE7 that performs three multiplications. It must

be considered that in the optimized form, PEs indexed 1, 3, 9,

and 11 are eliminated. The construction of the first cube

includes PEs indexed 0, 2, 4, 5, 6, and 7 whilst PEs indexed 4,

5, and 6 perform one MulMod and PE7 does three MulMod

operations, which totally becomes 6 MulMod operations. The

second and last cube includes processor elements indexed 8,

10, 12, 13, 14 and 15, whilst 8, 10, and 12 perform one

MulMod and PEs indexed 13, 14, and 15 do two MulMods,

which totally is nine MulMods. As a generalization, if more

than two cubes are employed, the middle cubes will have a

total number of 10 MulMod operations due to the need for one

more MulMod operation while getting the result of the next

cube to be passed to the first cube. It is reminded that the result

is always generated in PE7, which is located in the first cube.

Summarizing all of these, the number of MulMods is

6+9+10(Nc-2)=10Nc-5. Thus the total number of

P5

P5

 P5

P5

 P5

P5

P5

P5

P5

P5

P5

P5

 Eliminated PEs

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

P5

http://www.ijtra.com/

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 28 (August, 2015), PP. 7-11

Page | 10

multiplications in the best case is (k-1)-

log +10Nc-5.

Although the number of multiplications is a significant

parameter, the concurrency of the multiplications mentioned

above can also be discussed further more. In the proposed

approach, not only the number of multiplications is decreased,

but also there are some multiplications carried out

simultaneously in different PEs, which decreases the execution

time. Although, the total number of multiplication in the

optimized hypercube is 10Nc-5, the total time for performing

the multiplications is 5Nc-1 due to the concurrency of PEs.

Using the calculation method from[13], the number of

multiplication is illustrated by ɳ(k, Nc) and in result, the

number of multiplications for the optimized CRSA in the best

case is:

ɳ(k,Nc) = (k-1)-log

Therefore:

ɳ(k,Nc) = k-log

Table 1 compares the number of multiplications in the best,

average and worst case for the binary algorithm that is the best

known approach [4], and optimized CRSA with two cubes as

well as the number of multiplications for CRT[4],

Montgomery[5], Bielecki and Burak[3].

Table 1. Number of multiplications in Binary[4],

Bielecki and Burak [3], CRT[4], Montgomery [5] and

CRSA

While Nc=2, the number of PEs for optimized CRSA is 12,

and the number of multiplications is 2044 in the worst case.

The number of multiplication operations for average and worst

cases of RSA will be reduced using the optimized CRSA

method compared to the binary method [4] and the methods in

Bielecki and Burak [3], CRT [4], and Montgomery [5]. This

reduction depends on the number of MulMod blocks in the

hypercube topology and the bit length for RSA cryptographic

key.

5 Simulation Results

CRSA, pipeline technique and the optimization method of

CRSA outperform the well known existing approaches from

the literature, which are CRT, Montgomery, Binary, and

Bielecki and Burak. The example of Nc=2 in mathematical

analysis confirmed this result.

The execution time of these approaches are achieved using

C++ language of Microsoft® Visual Studio 2008™,

OpenMP© and OpenSSL. The Bielecki and Burak’ approach is

exempted from the results due to its long time of execution.

The hardware platform is a quad core, which represents four

PEs can perform their operation at the same time.

Table 2. Execution time of competitive methods

The execution values are obtained by average of 100

iterations for each method. The messages of these encryptions

are 64, 128 and 256 bytes for 1024, 2048 and 4096 bit

operations respectively. In this example the number of cubes is

considered to be one.

The advantages of applying pipelining to the main CRSA in

terms of throughput are presented in Fig. 4(a). As it is

explained before, the throughput is Thpipelined parallelCRSA=(Nc+3)

ThmainCRSA. Using two cubes the throughput is five times of the

situation of using one cube. The advantages of optimization in

terms of efficiency are presented in Fig. 4(b). The simulation

results of optimization for the average of ten iterations are

utilized to draw this figure. The speedup is considered by the

average execution of 100 iterations of CRSA and optimized of

CRSA, and the efficiency is multiplied by 100 to be in percent

unit.

1 2 3 4 5 6 7
4

5

6

7

8

9

10

Number of Cubes

T
hr

ou
gh

pu
t

500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

12

14

16

18

20

Key length(Bit)

E
ff

ic
ie

n
c
y
(%

)

CRSA

Optimized CRSA

 (a) (b)

Fig. 4 (a) The throughput of pipelined CRSA to CRSA

http://www.ijtra.com/

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 28 (August, 2015), PP. 7-11

Page | 11

A. Efficiency of CRSA vs. Optimization of CRSA for three

levels

Considering the number of cubes for CRSA to be two, the

throughput of pipelined CRSA is five times of main CRSA.

The more cubes employed, the more throughput will be

obtained.

When the number of PEs for CRSA is eight, the number of

PEs in Optimized CRSA becomes six. The more PEs

employed, the more efficiency will be obtained considering the

aforementioned tradeoff.Fig. 4(b) shows the efficiency of

CRSA and optimized CRSA for 512, 1024, 2048, and 4096 bit

key length using 128, 256, 512, 1024 byte plaintext

respectively. The optimized CRSA has preferred efficiency

compared to the CRSA, which means the need to less area.

Selecting a hypercube among others is dependent upon the

area and the speed and throughput, which are desired for the

security needs of the target system. There is always a trade-off

between speed and number of PEs. It must be considered that

the number of PEs must be increased to a value that the

overhead of multiple PEs does not lead to the reduction in the

speed.

II. CONCLUSION

The main drawback of asymmetric algorithms like RSA is

the high execution time of modular exponentiation execution

time. The given algorithm, the optimized CRSA, is employed

to decrease this execution time. The pipelined and optimized of

this method are used to improve the throughput and efficiency

of the encryption process. In addition, the results show that this

method reduces the number of multiplications, which

contributes in a higher speed. In addition, the pipelining

method makes all of the PEs busy doing computations all the

time and no PE is idle, which results in optimum throughput.

Eventually, the optimized method performs the same

operations exploiting fewer PEs, which leads to less area usage

that is another important factor in the world with widely use of

embedded systems. Moreover, other public key algorithms can

be used instead of RSA. In addition, other interconnection

networks are applicable to the algorithms.

 REFERENCES

[1] S. de Souza Raposo, et al., "M-ary parallel modular

exponentiation: Software vs. hardware," in 15th CSI

International Symposium on Computer Architecture and

Digital Systems (CADS), Iran, Tehran, 2010, pp. 19-24.

[2] W. Fan, et al., "Parallelization of RSA Algorithm

Based on Compute Unified Device Architecture," in 9th

International Conference on Grid and Cooperative Computing

(GCC) Nanjing, China, 2010, pp. 174-178.

[3] W. Bielecki and D. Burak, Parallelization Method of

Encryption Algorithms. New York, USA: Springer, 2007.

[4] C. K. Koc, "High-Speed RSA Implementation," RSA

Data Security, Inc., Redwood City, CA, USA1994.

[5] C.-L. Wu, "Fast Parallel Montgomery Binary

Exponentiation Algorithm Using Canonical- Signed-Digit

Recoding Technique," presented at the Proceedings of the 9th

International Conference on Algorithms and Architectures for

Parallel Processing, Taipei, Taiwan, 2009.

[6] G. Perin, et al., "Montgomery modular multiplication

on reconfigurable hardware: Fully systolic array vs parallel

implementation," in VI Southern Programmable Logic

Conference (SPL), Ipojuca 2010, pp. 61-66.

[7] H. El Rewini and M. Abd El Barr, Advanced

Computer Architecture and Parallel Processing. USA: John

Wiley & Sons Publishing, 2005.

[8] V. Kumar and V. N. Rao, "Parallel depth first search.

Part II. analysis," Int. J. Parallel Program., vol. 16, pp. 501-

519, 1987.

[9] L. R. Scott, et al., Scientific Parallel Computing. New

jersey, USA: Princeton University Press, 2005.

[10] A. Cilardo, et al., "Carry-Save Montgomery Modular

Exponentiation on Reconfigurable Hardware," presented at the

Proceedings of the conference on Design, automation and test

in Europe - Volume 3, 2004.

[11] S. Sepahvandi, et al., "An Improved Exponentiation

Algorithm for RSA Cryptosystem," in International

Conference on Research Challenges in Computer Science,

ICRCCS '09. , Shanghai, 2009, pp. 128-132.

[12] D.-Z. Sun, et al., "How to compute modular

exponentiation with large operators based on the right-to-left

binary algorithm," Applied Mathematics and Computation, vol.

176, pp. 280-292, 2006.

[13] P. Lara, et al., "Parallel modular exponentiation using

load balancing without precomputation," Journal of Computer

and System Sciences, vol. 78, pp. 575-582, 2012.

http://www.ijtra.com/

