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Abstract— Abstract 

One of the important algorithms in public key cryptography is 

RSA. The RSA is expensive due to using modular exponentiation 

for greater keys. A parallel method is presented in previous 

work. The proposed algorithm (CRSA), employs hypercube 

interconnection network to make RSA parallel. This paper 

presents the optimization of CRSA along with simulation results. 

The results of the conducted simulations indicate that this 

method requires less time to carry out encryption and decryption 

process compared to the original RSA and the other existing 

parallel approaches in the literature. These results are evaluated 

mathematically using time complexity.  

Index Terms— Parallel processing; cryptography; RSA; 

hypercube; pipeline; optimization  

I. INTRODUCTION 

 

Security takes the main role of transferring confidential 

information such as the passwords of master cards through 

unreliable networks. The first way to overcome this issue is 

cryptography. The RSA is a safe algorithm for public key 

cryptography while using long keys [1]. The most time 

consuming part of RSA is modular exponentiation [2]. A new 

approach using hypercube interconnection network is 

presented in the previous work. In this paper, the optimization 

of newly proposed CRSA (Cube based RSA), is compared to 

the Bielecki and Burak[3], CRT[4], Montgomery[5], and the 

binary [4]as an accepted method, in terms of the number of 

multiplications and execution time.  

The rest of this article is organized as follows. Firstly, we 

describe the pipelining of the CRSA. Then, the optimization of 

this work is explained. Afterwards, mathematical analysis is 

discussed. The simulation results are explained in section 5. 

Finally, the conclusion of the work is drawn. 

2. Pipelined CRSA 

CRSA can be applied as a coprocessor for embedded 

systems, for example, wireless sensor nodes, which require 

more speed to transfer information. Enhancing CRSA, 

pipelining mechanism is employed to achieve higher 

throughput. In the pipelined variation of CRSA, Processor 

Elements drastically decrease the latency between data 

elements [6]. The CRSA for two cubes is presented in Fig. 1. 

 

 

 

 
 Fig. 1 CRSA algorithm on hypercube architecture  

Considering the encryption as Ci=mi
e mod n where i is the 

block number, in CRSA, computing Ci should be finished 

before the Ci+1 starts to be computed.  In this enhanced 

approach, when the results of current operations are sent to the 

next level in hypercube, the computation for the following 

ciphertext are started in this level. In principle, a new operation 

can be initiated with this frequency. Even though previous ones 

are still in pipeline and the cipher texts are not ready yet. In the 

following, the assumptions are the same as the assumption of 

CRSA. 

The original idea illustrated in Fig. 1 can be improved more 

using pipeline mechanism. The pipeline phases are shown in 

the following figures. 
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(c)                                                                    (d) 

 
(e) 

Fig. 2 Steps of pipelining in CRSA 

The number of levels depends on the number of cubes in 

hypercube. However, the number of nodes can be more or less 

but not less than eight. Number of nodes should follow a 

hypercube rule, where the number of nodes is dividable by 

eight. In addition, a processor element is added as the 

coordinator of the first operation. Using more nodes, the more 

parallelization and pipeline levels will be gained. The volume 

of operations at the coordinator will be decreased by the 

increase of cubes in the hypercube, which leads to less 

execution time. There is always a tradeoff between the number 

of processor elements, the data size and key length. 

In the so called example, PEs indexed 1, 3, 4, 5, 6, 8, 9, 10, 

and 12 perform one MulMod operation while the others do two 

MulMod except PEs 0 and 2 do not perform any MulMod, and 

PE 7 performs three multiplications. The numbers of MulMod 

in PEs differ according to their level and position. Although the 

PEs are different, the PEs in each level are equal, which means 

PEs of each level will terminate their operation at the same 

time. Based on mentioned facts, the PEs of levels two and three 

perform one MulMod, which means T2= T3 . 

The first level of cube and the coordinator are considered 

first pipeline level together, and their execution time depends 

on the eo. This architecture is heterogeneous that means the 

processor elements of the first and second level are different 

from the other process elements as described in below. The 

processor element known as coordinator must be more 

advanced than the others and the processor elements, which 

need more than one MulMod are more advanced than the other 

PEs. Knowing these facts, the difference between the execution 

time of these processor elements and the others is very small. 

As mentioned above, the coordinator can be the CPU of the 

embedded system, and the hypercube part can be used as a 

coprocessor. Therefore, for the execution time on all levels, we 

have: 

T1 T2 = T3 T4 T5 

Using pipelining, as its stages are clarified in the Fig. 2, the 

throughput of parallel approach with pipelining will be about 

five times of the throughput of parallel approach for a 

hypercube with 16 nodes. When C1 is computed, calculation of 

C6 will be started as a new block; whilst in the CRSA, when C1 

is computed, calculation of C2 will be started as the next block. 

Th is defined as throughput in the subsequent equations.  

Tpipelined parallel1/5 TmainCRSA  

Thpipelined parallel5ThmainCRSA 

It should be considered that if the number of processor 

elements increases, the throughput of pipelining will increase 

too. Assuming Nc as the number of cubes in hypercube, the 

relation of the throughput for the pipelined parallel approach 

and the throughput for original CRSA parallel approach is as 

following: 

Thpipelined parallel=(Nc+3) ThmainCRSA 

Applying this enhancement, all processor elements are in 

use all the time computing cipher texts. In contrast, in the main 

CRSA, at each time slice, just one level of the processor 

elements was in use doing the computation, and the others 

were idle. Pipelining mechanism provides appropriate 

distribution of the work load among resources and improves 

throughput.  
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3. Optimization of CRSA 

Although the main method of CRSA with pipelining has 

admissible results, we have improved and optimized it to 

increase efficiency as well as decreasing the area, which is one 

of the most important factors in energy, and size limited 

systems like battery-powered sensor nodes. The main CRSA 

has some nodes, which are performing the same task and 

producing the same results during execution of the algorithm. 

Knowing this, the results of some PEs can be employed instead 

of the others with the same results. These redundant PEs can be 

eliminated in the architecture. By the increase in the number of 

cubes, the redundant PEs will be increased where applying 

optimization reduces the growth rate of the architecture. 

Considering two cubes in a hypercube, the PEs which are 

doing the same operation are marked with the same shape in 

Fig. 3 (a). Fig. 3 (b) illustrates the nodes, which can be 

eliminated and finally, the nodes that can be eliminated from 

the hypercube to optimize the algorithm are omitted in Fig. 3 

(c). It should be considered that the way processor elements are 

connected is not changed and only the connections to the 

eliminated nodes are removed from the architecture. This 

elimination leads to a simpler architecture and smaller area 

usage. The eliminated PEs do not include the ones playing the 

role of connecting two cubes. If the level of parallelizing is 

more than five, the number of eliminated PEs will increase. 

    

 
(a)                                                                    (b) 

 
(c) 

Fig. 3 Optimization of CRSA using two cubes with 16 

PEs 

The elimination decreases the size of the hypercube in Fig. 

3 from 16 to 12 PEs. The efficiency of the parallel approaches 

is measured using efficiency factor, which is given as E=S/P 

where P and S are the number of processor elements and 

speedup respectively [7-9]. Assuming the number of PEs as 16 

like the example in Fig. 3, employing optimization the 

efficiency of the algorithm will be increased from S/16 to S/12. 

Taking into the general form, the efficiency of main CRSA is 

E=S/8Nc where Nc is the number of cubes in the hypercube. 

Optimizing the CRSA, the efficiency of optimized CRSA is 

Eop=S/6Nc.  

4. Mathematical analysis 

Along with the throughput and efficiency, which are 

common parameters to analyze the architectures, the number of 

multiplications of an RSA method is known as a useful 

parameter to compare the results [10, 11]. The number of 

multiplications for binary as an accepted method is k-1, 3/2(k-

1) and 2(k-1) in the best, average, and worst case respectively 

where k is the number of bits of the exponent [4, 11, 12]. 

Let Nc be the number of cubes in hypercube, so the power 

of A and B in equations 17 and 18, will be divided into the 

number of PEs, which 

is . Thus the 

number of multiplications of the coordinator for the best case 

is:  

k'=(k-1)-log  

From mathematical point of view, we have: 

  
Therefore, 

k' = (k-1)-log  

k' = (k-1)-log  

The calculation of the total number of multiplications for 

optimized hypercube is described below. Considering two 

cubes in the architecture, PEs indexed 1, 3, 4, 5, 6, 8, 9, 10, and 

12 perform one MulMod while the others do two MulMod 

except PEs indexed 0 and 2, which do not perform any 

MulMod and PE7 that performs three multiplications. It must 

be considered that in the optimized form, PEs indexed 1, 3, 9, 

and 11 are eliminated. The construction of the first cube 

includes PEs indexed 0, 2, 4, 5, 6, and 7 whilst PEs indexed 4, 

5, and 6 perform one MulMod and PE7 does three MulMod 

operations, which totally becomes 6 MulMod operations. The 

second and last cube includes processor elements indexed 8, 

10, 12, 13, 14 and 15, whilst 8, 10, and 12 perform one 

MulMod and PEs indexed 13, 14, and 15 do two MulMods, 

which totally is nine MulMods. As a generalization, if more 

than two cubes are employed, the middle cubes will have a 

total number of 10 MulMod operations due to the need for one 

more MulMod operation while getting the result of the next 

cube to be passed to the first cube. It is reminded that the result 

is always generated in PE7, which is located in the first cube. 

Summarizing all of these, the number of MulMods is 

6+9+10(Nc-2)=10Nc-5. Thus the total number of 
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multiplications in the best case is (k-1)-

log +10Nc-5.  

Although the number of multiplications is a significant 

parameter, the concurrency of the multiplications mentioned 

above can also be discussed further more. In the proposed 

approach, not only the number of multiplications is decreased, 

but also there are some multiplications carried out 

simultaneously in different PEs, which decreases the execution 

time. Although, the total number of multiplication in the 

optimized hypercube is 10Nc-5, the total time for performing 

the multiplications is 5Nc-1 due to the concurrency of PEs. 

Using the calculation method from[13], the number of 

multiplication is illustrated by ɳ(k, Nc) and in result, the 

number of multiplications for the optimized CRSA in the best 

case is:  

ɳ(k,Nc) = (k-1)-log  

Therefore: 

ɳ(k,Nc) = k-log  

Table 1 compares the number of multiplications in the best, 

average and worst case for the binary algorithm that is the best 

known approach [4], and optimized CRSA with two cubes as 

well as the number of multiplications for CRT[4], 

Montgomery[5], Bielecki and Burak[3]. 

Table 1. Number of multiplications in Binary[4], 

Bielecki and Burak [3], CRT[4], Montgomery [5] and 

CRSA 

 
 

While Nc=2, the number of PEs for optimized CRSA is 12, 

and the number of multiplications is 2044 in the worst case.  

The number of multiplication operations for average and worst 

cases of RSA will be reduced using the optimized CRSA 

method compared to the binary method [4] and the methods in 

Bielecki and Burak [3], CRT [4], and Montgomery [5]. This 

reduction depends on the number of MulMod blocks in the 

hypercube topology and the bit length for RSA cryptographic 

key. 

5 Simulation Results 

CRSA, pipeline technique and the optimization method of 

CRSA outperform the well known existing approaches from 

the literature, which are CRT, Montgomery, Binary, and 

Bielecki and Burak. The example of Nc=2 in mathematical 

analysis confirmed this result. 

The execution time of these approaches are achieved using 

C++ language of Microsoft® Visual Studio 2008™, 

OpenMP© and OpenSSL. The Bielecki and Burak’ approach is 

exempted from the results due to its long time of execution. 

The hardware platform is a quad core, which represents four 

PEs can perform their operation at the same time. 

Table 2. Execution time of competitive methods 

 
The execution values are obtained by average of 100 

iterations for each method. The messages of these encryptions 

are 64, 128 and 256 bytes for 1024, 2048 and 4096 bit 

operations respectively. In this example the number of cubes is 

considered to be one. 

The advantages of applying pipelining to the main CRSA in 

terms of throughput are presented in Fig. 4(a). As it is 

explained before, the throughput is Thpipelined parallelCRSA=(Nc+3) 

ThmainCRSA. Using two cubes the throughput is five times of the 

situation of using one cube. The advantages of optimization in 

terms of efficiency are presented in Fig. 4(b). The simulation 

results of optimization for the average of ten iterations are 

utilized to draw this figure. The speedup is considered by the 

average execution of 100 iterations of CRSA and optimized of 

CRSA, and the efficiency is multiplied by 100 to be in percent 

unit. 
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Fig. 4 (a) The throughput of pipelined CRSA to CRSA  
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A.  Efficiency of CRSA vs. Optimization of CRSA for three 

levels 

Considering the number of cubes for CRSA to be two, the 

throughput of pipelined CRSA is five times of main CRSA. 

The more cubes employed, the more throughput will be 

obtained. 

When the number of PEs for CRSA is eight, the number of 

PEs in Optimized CRSA becomes six. The more PEs 

employed, the more efficiency will be obtained considering the 

aforementioned tradeoff.Fig. 4(b) shows the efficiency of 

CRSA and optimized CRSA for 512, 1024, 2048, and 4096 bit 

key length using 128, 256, 512, 1024 byte plaintext 

respectively. The optimized CRSA has preferred efficiency 

compared to the CRSA, which means the need to less area.  

Selecting a hypercube among others is dependent upon the 

area and the speed and throughput, which are desired for the 

security needs of the target system. There is always a trade-off 

between speed and number of PEs. It must be considered that 

the number of PEs must be increased to a value that the 

overhead of multiple PEs does not lead to the reduction in the 

speed.  

II. CONCLUSION 

The main drawback of asymmetric algorithms like RSA is 

the high execution time of modular exponentiation execution 

time. The given algorithm, the optimized CRSA, is employed 

to decrease this execution time. The pipelined and optimized of 

this method are used to improve the throughput and efficiency 

of the encryption process. In addition, the results show that this 

method reduces the number of multiplications, which 

contributes in a higher speed. In addition, the pipelining 

method makes all of the PEs busy doing computations all the 

time and no PE is idle, which results in optimum throughput. 

Eventually, the optimized method performs the same 

operations exploiting fewer PEs, which leads to less area usage 

that is another important factor in the world with widely use of 

embedded systems. Moreover, other public key algorithms can 

be used instead of RSA. In addition, other interconnection 

networks are applicable to the algorithms. 
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