
International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

 www.ijtra.com Special Issue 31(September, 2015), PP. 22-28 

22 | P a g e  
 

AGENT GUILT MODEL AND FAKE OBJECT 

DISTRIBUTION 

FOR IDENTIFYING DATA LEAKAGE 
 

Shruti D. Meshram#1, H. K. Chavan#2 
#Information Technology, Terna Engineering College, Mumbai University 

 Sector-22, Nerul, Navi Mumbai, Maharashtra, India 
1shrutimeshram143@yahoo.in 

2chavan.hari@gmail.com 
 

Abstract— Data Leakage is one of the major concerns of the 

corporate world today. When a company outsources its 

confidential data to a third party e.g. to a service provider, it may 

be the case that some of the data are leaked and found in an 

unauthorized place (e.g., on the web or somebody’s laptop). This 

would cause a large setback to the company. Thus Data Leakage 

Detection needs to be done in order to find out the guilty party.  

In the proposed system an Agent Guilt Model is developed 

wherein the distributor can assess the likelihood that the leaked 

data came from one or more agents, as opposed to having been 

independently gathered by other means. In order to increase the 

chances of detecting the data leakage, the proposed system also 

deals with the addition of dummy objects to the real objects. 

 

Keywords— leakage detection, guilty party, Agent Guilt. 
 

I. INTRODUCTION 

 

In the course of doing business, sometimes sensitive data 

must be handed over to supposedly trusted third parties. For 

example, a hospital may give patient records to researchers 

who will devise new treatments. Similarly, a company may 

have partnerships with other companies that require sharing 

customer data. Another enterprise may outsource its data 

processing, so data must be given to various other companies. 

We call the owner of the data the distributor and the 

supposedly trusted third parties the agents. Our goal is to 

detect when the distributor’s sensitive data has been leaked by 

agents, and if possible to identify the agent that leaked the 

data.  

 

We consider applications where the original sensitive data 

cannot be perturbed. Perturbation is a very useful technique 

where the data is modified and made “less sensitive” before 

being handed to agents. For example, one can add random 

noise to certain attributes, or one can replace exact values by 

ranges [12]. However, in some cases it is important not to 

alter the original distributor’s data. For example, if an 

outsourcer is doing our payroll, he must have the exact salary 

and customer identification numbers. If medical researchers 

will be treating patients (as opposed to simply computing 

statistics), they may need accurate data for the patients. 

 

Traditionally, leakage detection is handled by 

watermarking, [2], [6], [7], [8], e.g., a unique code is 

embedded in each distributed copy. If that copy is later 

discovered in the hands of an unauthorized party, the leaker 

can be identified. Watermarks can be very useful in some 

cases, but again, involve some modification of the original 

data. Furthermore, watermarks can sometimes be destroyed if 

the data recipient is malicious. 

 

In this paper we study unobtrusive techniques for detecting 

leakage of a set of objects or records. Specifically, we study 

the following scenario: After giving a set of objects to agents, 

the distributor discovers some of those same objects in an 

unauthorized place. (For example, the data may be found on a 

web site, or may be obtained through a legal discovery 

process.) At this point the distributor can assess the likelihood 

that the leaked data came from one or more agents, as opposed 

to having been independently gathered by other means. In this 

paper we develop a model for assessing the “guilt” of agents. 

 

This paper is organized as follows: The next section 

presents the related work. In section 3 we introduce problem 

setup and notation. In section 4 and 5we present the Agent 

Guilt Model and its analysis. In section 6 we present data 

allocation problem. Finally, the conclusion is presented. 

 

II. RELATED WORK 

 

Being one of the common problems worldwide, Data 

Leakage Detection has been addressed by many authors, since 

1996. Researches done by different authors on Data Leakage 

Detection are:  

 

As Watermarking is one of the useful techniques which is 

used traditionally, rights management of relational data can be 

done through watermarking [2]. The basic idea is to ensure 

that some bit positions for some of the attributes of some of 

the tuples contain specific values. The tuples, attributes within 

a tuple, bit positions in an attribute, and specific bit values are 

all algorithmically determined under the control of a private 

key known only to the owner of the relation. This bit pattern 

constitutes the watermark. Only if one has access to the 

mailto:shrutimeshram143@yahoo.in
mailto:2chavan.hari@gmail.com


International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

 www.ijtra.com Special Issue 31(September, 2015), PP. 22-28 

23 | P a g e  
 

private key, the watermark is detected with high probability. 

Similarly, marks insertion to relational data is an effective 

way for right protection of relational data [3].  

The proposed guilt detection approach is somewhat related 

to the data provenance problem. The data provenance problem 

i.e. tracing the lineage of objects implies essentially finding 

out the source of the data [4]. A good overview on the 

research conducted in this field is provided in [5] which 

include the points such as Importance of data Provenance, 

Overview of Provenance, Applications of Provenance, Other 

emerging applications. 

 

Lineage tracing for general data warehouse transformations 

can be done in an efficient way, which reduces over all tracing 

cost, storage and runtime overhead [6]. In the proposed 

system the problem formulation with objects and sets is more 

general and simplifies lineage tracing, since there is no 

consideration of any data transformation. 

 

Digital music distribution and audio watermarking can be 

done by adding a bit stream in digital audio with a secret key 

[7]. This secret key is known only to the water marker. It is 

used to hide the bit stream so that no other party can locate the 

watermark in the digital audio. To recover the watermark, this 

secret key is used along with the watermarked audio.  

 

Similarly, author Jen-Sheng Tsai, et al [8], have proposed a 

robust digital image watermarking method to achieve the goal 

of image content authentication and copyright protection. 

 

Likewise, author F. Hartungetal[9], have presented 

watermarking of uncompressed and compressed video by 

adding some noise signal to each video frame to obtain a 

watermarked video frame. All three watermarks:  audio [7], 

images [8] and video [9] data includes considerable 

redundancy in their respective digital representation. 

 

Author Yingjiu Li, et al [10] has provided schemes for 

fingerprinting relational databases. In fingerprinting scheme a 

buyer-specific mark is embedded into a data copy that is to be 

provided to a buyer. So Watermarking and Fingerprinting 

have different goals and hence different schemes.  

 

There are also lots of other works on mechanisms that allow 

only authorized users to access sensitive data through access 

control policies specified by author Sushil Jajodia, et al [11]. 

Such approaches prevent in some sense data leakage by 

sharing information only with trusted parties. However, these 

policies are restrictive and may make it impossible to satisfy 

agent’s requests. 

 

III. PROBLEM SETUP AND NOTATION 

 

A. Entities and Agents 

 

Set S={s1,s2,s3……} of valuable data object is owned by 

the distributor. There are set of agents say A1,A2,…An with 

whom the distributor wants to share some objects i.e. an agent 

Ai receives a subset of objects Oi that belong to S. The objects 

in S could be of any type and size, e.g., they could be tuples in 

a relation, or relations in a database. The distributor hopes that 

the agents do not leak that objects to any other third party. 

 

B. Guilty Agents 

 

Suppose after the distribution of objects to agents, the 

distributor find outs that some subset of S, say L has been 

leaked. This means that the distributor caught, some third 

party owns S let us call this third party the target. For 

example, this target may be displaying Lon its website, or 

perhaps as part of a legal discovery process, the target turned 

over L to the distributor or the distributor found L on targets 

laptop. Now since the distributor has share some objects with 

different agents A1……An so it is likely to suspect them, 

leaking the data. Here the problems of the distributor do not 

stop as the agents can forbid the suspicion telling that they are 

blameless n not guilty, and that the L data was obtained by the 

target through other means. For example, say one of the 

objects in L represents a customer C. Perhaps C is also a 

customer of some other company, and that company provided 

the data to the target. Or it might be possible that can be 

reconstructed from various publicly available sources on the 

web. 

 

Our Moto is to find out the likelihood that the target has 

obtained the leaked data from the agents instead, from other 

sources. Intuitively, the more data in L, the more difficult it is 

for the agents to deny that they leak anything. Similarly, the 

“rarer” the objects, the harder it is to argue that the target 

obtained them through other means. Finding out the likelihood 

that the agent leaked data is not only the mo to, but we would 

also like to find out if one of them in particular was more 

likely to be the leaker. For instance, if one of the L objects 

was only given to agentA1, while the other objects were given 

to all agents, we may suspect A1 more. The model we present 

next captures this intuition. 

 

We say an agent Ai is guilty if it contributes one or more 

objects to the target. We denote the event that agent Ai is 

guilty for a given leaked set L by Gi|L. Our next step is to 

estimate Pb{Gi|L}, i.e., the probability that agent Ai is guilty 

given evidence L. 

 

IV. AGENT GUILT MODEL 

 

Agent Guilt Model, as specified in [1], is used to assess the 

likelihood that leaked data came from one or more agents, by 

finding out the probability of guiltiness of an agent. 

 

As mentioned earlier, while detecting the guilty agents we 

will also consider that the target may obtained the leaked data 

through other sources and that none of the agents have leaked 

the data. So, we need an estimate for the Probability that 

values in L can be “guessed” by the target, while computing 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

 www.ijtra.com Special Issue 31(September, 2015), PP. 22-28 

24 | P a g e  
 

the Pb{Gi|L}. We call these estimate es, the probability that 

object scan be guessed by the target. 

In the rest of the paper, we assume that all S objects have 

the same es, which we finally call e, this is to simplify the 

formulas that we present. Our equations can be easily 

generalized to diverse es’s though they become cumbersome 

to display. 

 

Assumption: An object sЄL can only be obtained by the target 

in one of two ways: 

A single agent Ai leaked s from his own Oi set; or The target 

guessed (or obtained through other means) s without the help 

of any of the n agents. In other words, for all sЄL, the event 

that the target guesses and the events that agent Ai (i = 

1……… n) leaks object s are disjoint. 

 

Next, we provide a simple example, before we present the 

general formula for computing Pb{Gi|L}. Assume that sets S, 

O’s and L are as follows: 

S= {s1, s2, s3}, O1= {s1, s2}, O2 = {s1, s3}, L= {s1, s2, s3} 

In the above example, as L contains all three of the 

distributor’s objects that means it is clear that all three of the 

distributor’s objects   have been leaked. Also it is clear that 

the object s1 is given to both the agents. Let us first consider 

how the target may have obtained objects1. From Assumption, 

the target either guessed s1 or one of A1 or A2 leaked it. We 

know that the probability of the former event is e, so assuming 

that the probability that each of the two agents leaked s1 is the 

same we have the following cases: 

 the leaker guessed s1 with probability e; 

 agent A1 leaked s1 to L with probability (1-e)/2 

 agent A2 leaked s1 to L with probability (1-e)/2 

 

Similarly, we find that agent A1 leaked s2 to L with probability 

(1-e) since it is the only agent that has this data object. Given 

these values, the probability that agent A1 is not guilty, 

namely that A1 did not leak either object is: 

 

Pb{ 1|L}= (1 -(1 -e)/2) *(1 -(1 -e))  (1) 

Hence, the probability that A1 is guilty is: 

 

Pb{G1|L}= 1 –Pb{ 1|L}  (2) 

In the general case (with our assumption), to find the 

probability that an agent Ai is guilty given a set L, first we 

compute the probability that he leaks a single object s to L. To 

compute this we define the set of agents Ws= {Ai|sЄOi} that 

have sin their data sets. Then using Assumption and known 

probability e, we have: 

 

Pb{some agent leaked sto L}= 1 –e.  (3) 

 

Assuming that all agents that belong to Ws can leak s to L 

with equal probability and using Assumption we obtain: 

 

Pb{Ai leaked s to L}= (4) 

Given that agent Ai is guilty if he leaks at least one value to L, 

with Assumption and Equation 4 we can compute the 

probability Pb{Gi|L}that agent Ai is guilty: 

Pb{Gi|L}= 1 – (5) 

 

 

V. GUILT MODEL ANALYSIS 

 

The Agent Guilt Model helps the distributor to analyse the 

probability that an agent Gi is guilty given some evidence L 

i.e. nothing but Pb{Gi|L}.Next we present the analysis of the 

Agent Guilt Model by considering one of the parameter 

Wsand its impact on Pb. 

 

A.  Impact of Ws on Pb{Gi} 

 

Figure 1, presents the impact of distribution of single object 

s which belongs to L (set of leaked data).The x-axes 

represents Ws i.e. number of agents that have s in there data 

set. Here we have taken max value 50 and the y-axes represent 

the guilt probability, 1 is the highest probability. Looking at 

the graph, we can say, more the number of agents that have s 

in there data set (i.e. Oi) less will be the probability of finding 

the guilty agent. The lesser the distribution of s the more will 

be probability of finding the guilty agent. So in order to keep 

the probability of finding guilty agent high, the distributor 

must consider some way of distributing the data objects to the 

different agents so that there are less overlaps which leads to 

increase the chances of detecting the guilty agent.  
 

 
 
 

Fig. 1 
 

 

VI. DATA ALLOCATION PROBLEM 

 

This paper also focuses on the data allocation problem: In 

order to improve the chances of detecting a guilty agent, how 

can the distributor “intelligently” give data to agents. As 

illustrated in Figure. 2, we address four instances of this 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

 www.ijtra.com Special Issue 31(September, 2015), PP. 22-28 

25 | P a g e  
 

problem, depending on the type of data requests made by 

agents and whether “fake objects” are allowed [1]. 

 

The two types of requests we handle are: sample and 

explicit. 

1) Sample Request: Oi= SAMPLE(S,mi): Any subset of 

mi         records from S can be given to Ai. 

2) Explicit Request: Oi= Explicit(S,cond): Agent Ai 

receives all S objects that satisfy condition 

specified by Ai himself. 

 

 
 

Fig. 2 Leakage problem instances [1]. 

 

The objects created by the distributor, which look like the 

real objects, that do not really belong to S but are distributed 

to the agents together with the objects in S are addressed as 

“Fake objects” in this paper. In order to increase the chances 

of detecting agents that leak data, the distributor injects fake 

object along with the real objects. We discuss fake objects in 

more detail in Section 6.1. 

 

As shown in Figure. 2, we represent our four problem 

instances with the names EF, EFn, IF, and IFn, where E stands 

for explicit requests, I for sample requests, F for the use of 

fake objects, and Fn for the case where fake objects are not 

allowed. Note that, for simplicity, we are assuming that in the 

E problem instances, all agents make explicit requests, while 

in the I instances, all agents make sample requests. If the 

agents makes sample request specifying only the number of 

records then it is totally on the distributor whom to give which 

record intelligently so that there will be less overlap. If the 

request is explicit, the agents will provide the records that 

satisfy the particular condition, say for example: assume that 

there are two agents A1 and A2 .A1 make 

requestO1=EXPLICIT(S, cond1) and request made by A2 is 

O2=EXPLICIT(S, cond2).Say cond1 is “city=Mumbai” and 

cond2 is ”city=Pune” so in this case cond1≠cond2 we can 

solve the problem by providing the respected data to both the 

agents from the set S. The problem occurs if cond1=cond2, 

that is our problem will be how to distribute the same objects 

to two agents. 

 

A.   Fake Objects 

 

In order to improve the effectiveness in detecting the guilty 

agents the distributor may add fake objects to the distributed 

data. However, due to fake objects there may be impact on the 

accuracy of what agents do, so it may not be always 

applicable. 

 

Data leakage detection by perturbing data is a well-known 

approach. However, in most cases, individual objects are 

perturbed, e.g., by adding random noise to sensitive salaries, 

or adding a watermark to an image. In our case, we are 

perturbing the set of distributor objects by adding fake 

elements. In some applications, fewer problems may be 

caused by using fake objects than perturbing real objects. For 

example, say the agents are hospitals so it is understood that 

the data objects that the distributor needs to distribute will be 

medical records In this case, the traditional perturbation 

techniques (eg. watermarking or addition of noise) are not 

applicable since even minute changes in the records of actual 

patients are undesirable and will have major impact on the 

patient’s treatment. However, the addition of some fake 

medical records may be acceptable, since no patient matches 

these records, and hence, no one will ever be treated based on 

fake records. 

 

The distributor creates and adds fake objects to the data that 

he distributes to agents. Let agent Ai receives Oi along with 

the set of fake objects say Fi which is a subset of Oi. The fake 

objects creation must be such, that it is indistinguishable from 

the real objects to the agent; this is discussed below in details.  

 

In many cases, the distributor may have constrain on the 

number of fake objects that he can create. For example, 

objects to be distributed may hold e-mail addresses, simply 

creating and adding a fake object which is an e-mail address is 

very likely for the agent to discover that it is a fake one. An e-

mail address has its inbox therefore each fake e-mail address 

may require the creation of an actual inbox. To detect whether 

there is leakage, the distributor has to actually monitor the 

inboxes.  If the distributer gets an e-mail from someone else 

(other than the agent who was given the address), it is obvious 

that leakage of address took place. Thus distributor may have 

a limit of fake objects as they may consume resources, as in 

the case of e-mail accounts. We denote limit by B fake 

objects. Similarly, we can say an agent Ai can receive up to bi 

fake objects. This means the distributor may also have 

constrain on the distribution of fake objects to individual 

agent. This is to reduce the impact of fake objects on the 

agent’s task and the suspicion of agent on fake objects. 

 

Creation: It is difficult to create fake but real looking objects. 

The creation of fake but real-looking objects is beyond the 

scope of this paper. We model the creation of a fake object for 

agent Ai as a black box function 

CREATEFAKEOBJECT(Oi,Fi,condi) that takes as input, the 

set of all objects Oi, the subset of fake objects Fi that Ai has 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

 www.ijtra.com Special Issue 31(September, 2015), PP. 22-28 

26 | P a g e  
 

received so far, and condi, and returns a new fake object [1]. 

This function needs condi to produce a valid object that 

satisfies Ai’s condition. Set Oi is needed as input so that the 

created fake object is not only valid but also indistinguishable 

from other real objects. 

For example, the creation function of a fake payroll record 

that includes an employee rank and a salary attribute may take 

into account the distribution of employee ranks, the 

distribution of salaries, as well as the correlation between the 

two attributes. Ensuring that key statistics do not change by 

the introduction of fake objects is important if the agents will 

be using such statistics in their work. Finally, function 

CREATEFAKEOBJECT() has to be aware of the fake objects 

Fi added so far, again to ensure proper statistics. The 

distributor can also use function CREATEFAKEOBJECT() 

when it wants to send the same fake object to a set of agents. 

In this case, the function arguments are the union of the Oi and 

Fi tables, respectively, and the intersection of the conditions 

condis. 

 

Although we do not deal with the implementation of 

CREATEFAKEOBJECT(), we note that there are two main 

design options[1]. The function can either produce a fake 

object on demand every time it is called or it can return an 

appropriate object from a pool of objects created in advance. 

 

B.  Optimization Problem 

 

The distributor’s data allocation to agents has one constraint 

and one objective. The distributor’s constraint is to satisfy 

agents’ requests, by providing them with the number of 

objects they request or with all available objects that satisfy 

their conditions. His objective is to be able to detect an agent 

who leaks any portion of his data. We consider the constraint 

as strict. The distributor may not deny serving an agent 

request and may not provide agents with different perturbed 

versions of the same objects as in. We consider fake object 

distribution as the only possible constraint relaxation. Our 

detection objective is ideal and intractable. Detection would 

be assured only if the distributor gave no data object to any 

agent. We use instead the following objective: maximize the 

chances of detecting a guilty agent that leaks all his data 

objects. 

 

We now introduce some notation to state formally the 

distributor’s objective. Recall that Pb {Gj|L=Oi} or simply Pb 

{Gj|Oi}is the probability that agent Ajis guilty if the distributor 

discovers a leaked table L that contains all Oi objects. We 

define the difference functions ∆(i,j) as 

 

∆(i,j)= Pb {Gi|Oi} -Pb {Gj|Oi}    i,j=1………….n     (6) 

 

Note that differences ∆ have nonnegative values: given that 

set Oi contains all the leaked objects, agent Ai is at least as 

likely to be guilty as any other agent. Difference ∆(i,j) is 

positive for any agent Aj, whose set Oj does not contain all 

data of L. It is zero if Oi is the subset of Oj. In this case, the 

distributor will consider both agents Ai and Aj equally guilty 

since they have both received all the leaked objects. The 

larger a ∆(i,j) value is, the easier it is to identify Ai as the 

leaking agent. Thus, we want to distribute data so that ∆ 

values are large. 

Problem Definition:  Let the distributor have data requests 

from n agents. The distributor wants to give tables 

O1,…..,Onto agents A1…..An, respectively, so that he satisfies 

agents’ requests, and he maximizes the guilt probability 

differences∆(i,j)for all i, j = 1,…, n and i ≠ j. Assuming that 

the Oi sets satisfy the agents’ requests, we can express the 

problem as a optimization problem: 

 

maximize(over O1…On)  (….., ∆(i,j) ,…….)         (7) 

 

If the optimization problem has an optimal solution, it 

means that there exists an allocation D*={O1*……On*}such 

that any other feasible allocation D={O1……On}yields ∆(i,j) 

≥ ∆*(i,j) for all i, j. This means that allocation D* allows the 

distributor to discern any guilty agent with higher confidence 

than any other allocation, since it maximizes the probability Pb 

{Gi|Oi} with respect to any other probability Pb {Gi|Oj} with 

j≠i. 

 

Let us get more clear idea by conducting a small 

experiment. Figure3. Shows Students record which the 

distributor holds. It consist of 12 students records along with 

their id, name, course and marks. This data is nothing but 

according to this paper set S.  

 

 
 

Fig. 3 Student Record (set S). 

 

Figure 4 contains 5 records which are leaked and they belong 

to S i.e. this is set L. Figure 5 and 6 show the records that 

agent 1 and agent 2 have i.e. those are the O1 and O2 

respectively. 

 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

 www.ijtra.com Special Issue 31(September, 2015), PP. 22-28 

27 | P a g e  
 

 
Fig. 4 Leaked Records (set L). 

 

As the distributor has distributed the data from S to both 

agent 1 and agent 2 so it is likely to suspect that the data might 

have been leaked by any one of them. We know the leaked 

data, now we have to find out, amongst agent 1 and agent2 

who has leaked the data. We will compare both the data n find 

out the difference between the records that each of the agents 

has i.e.O1 and O2.From Figure7 we get to know that out of 7 

records there is a difference of 5 records so we have a better 

chance of identifying the correct leaker 

 

 
Fig. 5 Records with agent1 (set O1). 

 

 
Fig. 6 Records with agent2 (set O2). 

 

Next we compare L with O1, as shown in figure 8.It is seen 

that 5 of the records matched and the difference is of 2. 

Similarly, we compare L with O2 in figure 9. We get to know 

that the similarity is only 2 and the difference is 5. So based 

on this experiment it is clear that agent 1 is guilty and he is the 

leaker as more number of records that he has in his data set 

matches with the leaked set as compared to Agent 2.Hence it 

is seen that if the difference between the distributed sets is 

more, then finding out the leaker is easy.  

 

 
         Agent1 record                                   Agent2 record 
 

Fig. 7 Difference between Agent1 and Agent2 records. 

 

C.  Allocation Strategy 

 

Algorithm that we present next is a baseline algorithm for 

distributing data to agents with explicit request. Out of the 

four instances in Figure2, we are considering EF instance.          

 
                          Agent1 record                         Leaked record 

 
Fig. 8 Difference between Agent1 and Leaked records. 

 

 
                    Agent2 record                                  Leaked record 

 
Fig. 9 Difference between Agent2 and Leaked records. 

 

 

Algorithm: Allocation of real object along with fake object 

[1]: 

Input:O1… On, cond1…condn, b1…bn, 

B // B – fake objects created by distributor, 

bi – fake objects agent Ai can receive 

Output:  

O1… On, 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

 www.ijtra.com Special Issue 31(September, 2015), PP. 22-28 

28 | P a g e  
 

F1… Fn// Fi – fake object received by selected agent Ai 

 

1: R ←ø . Agents that can receive fake objects 

2: for i = 1….. n do 

3: if bi > 0 then 

4: R ← R ⋃ {i} // i – Agent that was selected to add fake 

objects 

5: Fi ←ø 

6: while B > 0 do 

7: i ← SELECTAGENT(R,O1, . . . , On) // i –selected agent 

8: f ←CREATEFAKEOBJECT(Oi, Fi, condi) // black box 

function for fake object creation 

9: Oi ← Oi ⋃ {f} // f – Fake object that was created for agent 

Ai          is inserted to f 

10: Fi ← Fi ⋃ {f} 

11: bi ← bi - 1 

12: if bi = 0 then 

13: R ← R\{Oi} 

14: B ← B – 1 

 

Above algorithm is a general “driver” that will be used for  

allocation of the requested data to the agents along with fake 

objects. 

 

VI. CONCLUSION 

 

Data leakage detection was traditionally handled by 

watermarking. Watermarking includes alteration of original 

sensitive data. However, in many cases, there is a need, not to 

alter the original sensitive data. In such cases, determining 

whether a leaked object came from an agent or from some 

other source is very uncertain as it does not include any 

identification mark.  In the proposed system, using the Agent 

Guilt Model, it is possible to assess the likelihood that an 

agent is responsible for a leak, based on the overlap of his data 

with the leaked data and the data of other agents, and based on 

the probability that objects can be “guessed” by other means. 

Addition of fake or dummy objects while distributing the real 

object to the agents can further improves the chances of 

detecting the guilty agent. 

 

Our future work includes the study of different allocation 

strategies for different instances (except EF) presented in 

Figure 2. So that we can consider more scenarios that are not 

included in this paper and also analysis of Agent Guilt Model 

using different parameters e.g. e, can be done. 

 

REFERENCES 

[1] Panagiotis Papadimitriou, and Hector Garcia-Molina, “Data Leakage 

Detection” IEEE TRANSACTIONS ON KNOWLEDGE AND DATA 
ENGINEERING, VOL. 23, NO. 1, JANUARY 2011. 

 

[2] R. Agrawal and J. Kiernan, “Watermarking Relational Databases, 
”Proc. 28th Int’l Conf. Very Large             Data Bases (VLDB ’02), 

VLDB Endowment, pp. 155-166, 2002. 

 
[3]  R. Sion, M. Atallah, and S. Prabhakar, “Rights Protection for 

Relational Data,” IEEE Trans. Knowledge And Data Engineering , vol. 

16, no. 12, Dec. 2004. 
 

[4]  P. Buneman, S. Khanna, and W.C. Tan, “Why and Where: A 

Characterization of Data Provenance,” Proc. Eighth Int’l Conf. 
Database Theory (ICDT ’01), J.V. den Bussche and V. Vianu, eds.,pp. 

316-330, Jan. 2001. 

 
[5] P.Buneman and W.-C. Tan “Provenance in Databases,” Proc. ACM 

SIGMOD, pp. 1171-1173, 2007. 

 
[6] Y.Cui and J. Widom, “Lineage Tracing for General Data Warehouse 

Transformations,” The VLDB J., vol. 12, pp. 41-58, 2003. 

 

[7] S.Czerwinski, R. Fromm, and T. Hodes, “Digital Music Distribution 

and Audio Watermarking,” http://www.scientificcommons. 

org/43025658, 2007. 

 
[8]  Jen-Sheng, Win-Bin Huang,Chao-Lieh Chen, Yau-Hwang Kuo, “A 

Feature-Based Digital Image Watermarking For Copyright Protection 

and Content Authentication,” 1-4244-1437-7/07/$20.00 ,2007 IEEE ,v-
469,ICIP 2007. 

 

[9]  F. Hartung and B. Girod, “Watermarking of Uncompressed and 
Compressed Video,” Signal Processing, vol. 66, no. 3, pp. 283-

301,1998. 

 
[10]  Y. Li, V. Swarup, and S. Jajodia, “Fingerprinting Relational Databases: 

Schemes and Specialties,” IEEE Trans. Dependable and Secure 

Computing, vol. 2, no. 1, pp. 34-45, Jan.-Mar. 2005. 
 

[11]  S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian, 

“Flexible Support for Multiple Access Control Policies,” ACM Trans. 
Database Systems, vol. 26, no. 2, pp. 214-260, 2001. 

 

[12]  L. Sweeney, “Achieving K-Anonymity Privacy Protection Using 

Generalization and Suppression,” 

http://en.scientificcommons.org/43196131, 2002. 

 

http://www.scientificcommons/
http://en.scientificcommons/

