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Abstract: Conjugate gradient method has played a 

significant role in solving large scale unconstrained optimization. 

Numerous survey and modifications have been done recently to 

improve this method. In this paper, we proposed a new hybrid 

method of Wei-Yao-Liu (WYL) method and the Abdelrhaman et 

al (AMRI) method, which possesses the sufficient descent 

condition under exact line search. The result of the numerical 

experiments show that the new proposed hybrid method perform 

better when compared with the WYL and AMRI methods. A set 

of test problems with different initial points are used, most of 

them are from Andrei (2008). 

Keywords: Exact line search, Conjugate gradient Method, 
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I. INTRODUCTION  

Conjugate gradient (CG) method is very useful in solving 

large scale unconstrained optimization problems. This is due to 

its low memory requirement and simplicity in implementation. 

This method is of the form 

   
,),(min nRxxf   (1) 

where RRf n :  is a continuously differentiable function. 

Generally, the conjugate gradient methods are iterative 

methods of the form, 

   
,...,2,1,0,1  kdxx kkkk   (2) 

 

where 0k  is the step length computed using exact line 

search by the formula given as 

  
  ),(min kkkkk dxfdxf    (3) 

and kd is the search direction computed as follow 
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where k  is known as the conjugate gradient coefficient that 

characterizes different CG methods. Some classical methods 

such as the Fletcher Reeves (FR) [12], Dai and Yuan (DY) 

[21], and Conjugate Descent (CD), proposed by Fletcher [11], 

define as 
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where proved to possess strong convergent properties, but they 

may not have modest practical performance due to jamming. 

On the other hand, the method of Polak Ribiere and polyak 

(PRP) [13, 17], Hestenes and Stiefel (HS) [10], and Liu and 

Storey (LS) [14], define below 
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may not always be convergent, but they often have better 

computational performances. From equation (5 - 10), 1kg   

and kg denotes the gradient of )(xf  at the point 1kx  and 

kx  respectively. Also, . denotes Euclidean norm of vectors. 

   Hybrid CG methods holds an important role in solving large 

scale unconstrained optimization. This is due to the part it plays 

in achieving better computational performance as well as 

retaining the strong global convergence properties of the 

various methods. Numerous researches and modifications have 

been done recently which focus mainly on hybridization of the 

different categories of the CG methods. These include Dai and 

Yuan [4], Touati-Ahmed and Storey [3], and Andrei [5-8]. The 

studies concentrate on the projection of various CG algorithms, 

usually with the aim of preventing the jamming phenomenon. 

Recently, Xiangrong LI and Xupei Zhao [16], suggested a 

hybrid method combining PRP and WYL methods. This 

method possesses some nice properties of the PRP method and 

the WYL method define as 

 

   
 WYL

k

PRP

k

WP

k  ,max
 (11) 

Motivated by this idea, we proposed a new hybrid CG method 

between the WYL [20] method, and AMRI [19], where the 

WYL method is given as 
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and the AMRI method define as 
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II. NEW HYBRID COEFFICIENT 

 In this section, we present the new coefficient as follows 

 

     
 AMRI

k

WYL

k

ASW

k  ,max
 (14) 

where SW-A stands for Sulaiman, WYL method, and AMRI 

method. The new formula possesses some good properties of 

the WYL method and also the AMRI method.  

 

In this paper, we present the sufficient descent condition of a 

new hybrid CG method. The algorithm of this new method 

presented in the next section. In section 3, we give the proof of 

the sufficient descent condition under exact line search. 

Numerical result and discussions are presented in section 4. 

Lastly, section 5 gives the conclusion. 

The algorithm of
ASW

k

  is given as follows 

 

ALGORITHM  

Step1. Given an initial point nRx 0 , )1,0( , Set 00 gd   

if | || | 0g  , then stop. 

Step2.  Compute
ASW

k

   based on (14). 

Step3. Compute kd  based on (4). If |||| kg , then terminate,  

Step4. Compute step size based on (3).  

Step5.  Update new point based on (2). 

Step6.  Convergent test and stopping criteria 

If )()( 1 kk xfxf and |||| kg , then terminate, else, Set 

1 kk  and go to Step 2. 

 

III. CONVERGENT ANALYSIS 

In this section, the convergent properties of 
ASW

k

  will be 

studied. We only show the result of convergence for general 

CG method. To prove the convergence, we assumed that every 

search direction kd   should satisfy the descent condition 

      
0k

T

k dg  (15) 

for all 0k . If there exist a constant 0   for all 0k   

then, the search directions satisfy the following sufficient 

descent condition 

      
2|||| kk

T

k gdg   (16) 

The following Theorem is very important in establishing 

sufficient descent condition. 

 

Theorem 1: Consider a CG method with the search direction 

(4) and 
ASW

k

  given as (14), then condition (15) holds for 

all 0k . 

 

Proof. If ,0k  then it is clear that
2

000 |||| gdgT   . 

Hence, condition (15) holds true. We also need to show that 

for 1k , condition (15) will also hold true 

From (4), multiply both sides by 1kg , we obtain 
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For exact line search, we know that .01  k

T
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Therefore, it implies that 1kd   is a sufficient descent direction. 

Hence,
 

2|||| kk

T

k gdg  holds true. The proof is 

completed. ■ 

 

IV. NUMERICAL RESULT AND DISCUSSION 

In this section, we present the result of our numerical 

experiments. We compared the performance of the new hybrid 

SWYL-AMRI method with the WYL method and the AMRI 

method base of number of iterations and CPU time. Most of the 

selected test problems considered are from Andrei [24], as 

presented in table 1. We considered 
610|||| kg  to be 

stopping criteria. For each of the test problems, four initial 

points are used, starting with the point that is near the solution 

and moving to the point that is furthest from the solution. These 

four initial points will lead us to test the global convergence 

and the robustness of our method. All codes are written on 

MATLAB 7.6.0 (R 2008a) subroutine programming. The test 

results are run on an Intel® Core™ i5-2410M CPU @ 2.30 

GHz processor, 4GB for RAM memory and Windows 7 

Professional operating system. 

Figure 1and 2 shows the performance results respectively, 

these were evaluated using the performance profile by Dolan 

and Moore [15]. Clearly, it shows that the new SWYL-AMRI 

hybrid method outperforms the WYL method and the AMRI 

method, as it was able to solve all the test problems 

successfully and reach 100%. However, the WYL method was 

able to solve about 97% of the test problems, and AMRI 

method was able to solve about 95% of the problems 

respectively. This shows that our new hybrid method is more 

effective than the WYL and AMRI methods\ 
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TABLE 1:  A  LIST OF PROBLEM FUNCTIONS 

No Function Dim Initial Points 

1 Six hump 2 (1, 1), (2, 2), (5,5), (10, -10) 

2 Three hump 2 (24, 24), (29, 29), (33, 33), (50, 50) 

3 Booth 2 (10, -10), (20, 20), (50, 50), (100, 100) 

4 Treccani 2 (5, 5), (10,10), (-20, 20), (-50, -50) 

5 Matyas 2 (1, 1), (5, 5), (10, 10), (50, 50) 

6 Extended Maratos 2, 4 (0,0,0,0), (0.5,5, 0.5, 5), (10, 0.5, 10, 0.5), (70, 70, 70, 70) 

7 Ext FREUD & ROTH 2, 4 (13, 13, 13, 13), (21, 21, 21, 21), (25, 25, 25,25), (23, 23, 23, 23) 

8 Generalized Trig 2, 4, 10 (0.5, 5, …, 5),(5, 10, …, 10),(7,7, …, 7),(50, 50, …, 50) 

9 Fletcher 2, 4, 10 (23, 23, …, 23), (45, 45, …, 45), (50, 5,…, 5), (70, 70, …,70) 

10 Extended Penalty 2, 4, 10, 100 (0.5,5, …,5),(10,-0.5…,-0.5), (105,105, …,105), (130,130, …,130) 

11 Raydan 1 2, 4, 10, 100 (1, 1, …,1), (3, 3, …, 3), (5, 5, …, 5), (-10, -10, …, -10) 

12 Hager 2, 4, 10, 100 (3, -3, …, -3),(21, 21, …, 21), (-23, 23, …, 23), (23, 23, …, 23) 

13 Rosenbrock 2, 4, 10, 100, 500, 1000, 10000 (7, 7, …, 7), (13, 13, …, 13), (23, 23, …, 23), (35, 35, …, 35) 

14 Shallow 2, 4, 10, 100, 500, 1000, 10000 (21, -21, …, -21), (21, 21, …, 21), (50,50, …, 50),(130, 130, …, 130) 

15 Tridiagonal 1 2, 4, 10, 100, 500, 1000, 10000 (0, 0,…, 0), (1, -1, …, -1), (17, -17, …, -17), (30, 30, …, 30) 

16 Ext White & Holst 2, 4, 10, 100, 500, 1000, 10000 (-5, -5, …, -5), (2, -2, …, -2), (3, -3, …, -3), (7, -7, …, -7) 

17 Ext Denschnb 2, 4, 10, 100, 500, 1000, 10000 (8, 8, …, 8), (11, 11, …,11), (12, 12, …, 12),(13, 13, …, 13) 

18 Diagonal 4 2, 4, 10, 100, 500, 1000, 10000 (2, 2, …, 2), (5, 5, …,5), (10, 10, …, 10), (15, 15, …, 15) 
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   Fig.1: Performance profile based on the number of iteration                           Fig.1: Performance profile based on CPU time              

V. CONCLUSION 

  In this paper, we have examined a new hybrid method for 

solving unconstrained optimization. We showed that the new 

method satisfies the sufficient descent condition for all search 

direction under exact line search. The result of the numerical 

experiments show that the given method is competitive when 

compared to other classical conjugate gradient methods. In 

future, we hope to test this new method under different search 

rules. 
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