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Abstract— In this paper, an appropriate analysis has been 

performed to study the incompressible fully developed flow of 

a non-Newtonian third grade fluid in a plane duct under an 

externally applied magnetic field. The governing equations, 

continuity, momentum and Ohm’s law for this problem are 

reduced to an ordinary form and are solved by Homotopy 

Analysis Method (HAM). The present study works on new 

algorithm which proposes more suitable initial function with 

faster convergence to final solution in comparison with 

traditional method in HAM. From the physical point of view, 

the results indicate that the behavior of non¬-Newtonian third 

grade fluid flow approached the Newtonian one with 

increasing the magnetic field strength. 

Index terms— Fully developed, Magnetohydrodynamic, 

Plane duct, Third grade 

I. INTRODUCTION 

The magnetohyrodynamcs (MHD) phenomenon is 

characterized by an interaction between the hydrodynamic 

boundary layer and the electromagnetic field. Recently there 

has been an increasing interest in fluid flow through MHD 

channel because many applications of them are being used 

in engineering. An extensive theoretical work has been 

carried out on the hydromagnetic fluid flow in a channel 

under various situations by Hartmann [1]. Theoretical 

investigation of the applicability of magnetic fields for 

controlling hydrodynamic separation in Jeffrey-Hamel 

flows of viscoelastic fluids has been studied by Sadeghy et 

al. [2]. The MHD Flow of Compressible Fluid in a Channel 

with Porous Walls is Investigated by Pourmahmoud et al. 

[3]. Although most of the common fluids in the real world 

exhibit Newtonian behavior, there are important classes of 

fluids that are classified as non-Newtonian. Non-Newtonian 

fluids are those, whose constitutive equation, the equation 

that relates the stress and strain, is not a simple linear 

relation. Due to non-linear dependence, the analysis of the 

behavior of non-Newtonian fluids presents exciting 

challenges to Engineers and mathematicians. There is not a 

single constitutive equation which can describe the flow 

behavior of all the non-Newtonian fluids. Because of the 

complex microstructure of fluids, various models have been 

proposed to predict the non-Newtonian behavior. Several 

investigators are now engaged in getting the solutions under 

different physical aspects. One of special cases among these 

classes of fluids which can be solved analytically is the 

second grade fluid. Baris et al. [4], Mohyuddin et al. [5], Ali 

et al.[6],  and Chauhan et al. [7] studied second grade fluid   

in channel at various situations.  Although the second grade 

fluid model for steady flow is able to show the normal stress 

effects, it does not take into account the shear thinning or 

shear thickening phenomena that many fluids show. The 

third grade fluid model represents a further attempt toward a 

more comprehensive description of the behavior of non-

Newtonian fluids. The third grade fluid   in channel is 

studied by Roohi et al. [8] and  Mohyuddin et al. [9] in 

different situations.  Keeping this importance of third grade 

fluid, our concern in this paper is to investigate the effect of 

magnetic strength on channel caring third grade fluid, in 

fully developed region. The governing differential equation 

is nonlinear and second order.  The mentioned equation is 

solved by applying the homotopy analysis method (HAM). 

It provides an efficient explicit solution with minimal 

calculations. The HAM was first proposed by Liao in 1992 

and then was developed by him [10-13].  This method has 

been successfully applied to solve many types of nonlinear 

problems [14-18]. In HAM solutions, we should choose an 

initial guess function, , and auxiliary linear operator, . If 

the number of boundary conditions and  order increased, 

the  will have better convergence to final solution, i.e. 

. For this purpose differentiate governing equation and 

the result is used as main equation.  The first equation is 

used as additional boundary condition. The accuracy of 

HAM is authenticated by comparing with numerical results.  

 

A. Problem statement 

 
       Fig.1. A sketch of the physical problem 

Let us consider the fully developed laminar flow of an 

incompressible and electrically conducting fluid in a 

channel as shown in Fig.1. The no slip boundary conditions 

are exerted on walls. The uniform magnetic field , is 

imposed along the -axis. The governing equations, 

continuity, momentum and Ohm’s law for the problem can 

be written as follows: 
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. 0,V 
 (1) 

,
dV

p divS J B
dt

     
 

(2) 

( ),J E V Bs= + ´
 

(3) 

 

Where  and  are the density, velocity vector, 

pressure, extra stress tensor, electrical conductivity and 

current density respectively. The  denotes the material 

time derivative,   (   being the induced 

magnetic field and  an external magnetic field), is the 

total magnetic field and  is the electric field. It is assumed 

that the magnetic Reynolds Number is small and the 

induced magnetic field, , due to the motion of the 

electrically conducting fluid is negligible. It is also assumed 

that the electrical conductivity of fluid, , is constant and the 

external electric field is zero. Under these assumptions the 

last term in Eq. (2), The Lorentz force per unit volume is 

given by: 

 

2
0 .J B B us´ = -

 
(4) 

The extra stress tensor   is defined as [8-9] 

   
1 1 2 2 1 3

2 1 2 2 1 3 1

2
1

2
1 ,

S A A A A

A A A A trA A

   

 

   

  
 

(5) 

µ being the coefficient of shear viscosity  

 are material constants. The tensors 

 are given by: 

   1 ,
T

A gradV gradV 
 

(6)    2 1 1 1,
Td

A A A gradV gradV A
dt

  
 

   3 2 2 2 .
Td

A A A gradV gradV A
dt

  
 

 

The flow is fully-developed, then the velocity and extra 

stress are dependent of  only, then; 

 

 ( ),0,0 ,V u y
 

(7) 

 .S S y
 

(8) 

 

Under these assumptions and definitions, the velocity field 

automatically satisfies the continuity equation and the 

momentum equations can be written as follow: 

2
0 0,

dS dpxy
B u

dy dx
  

 

(9) 

0.
dp

dy


 

(10) 

 

For the fully developed flow the pressure gradient is 

constant and then Eq. (9) can be written as: 

 

2

0 .
xydS dp

B u cons
dy dx

  

 

(11) 

 

By using Eqs. (5-8), the expression for the stress is; 

 

2 3

3

2 , .xy

du du
S

dy dy
       

 
 
   

(12) 

 

By using Eq. (11) and Eq. (12), the momentum equation is: 

 
22 2

2
02 2

6 .
d u du d u dp

B u
dy dy dy dx

    
 
 
   

(13) 

The flow is symmetric about the center line of the channel, 

, and we only focus our attention on the flow in the 

region  .The boundary conditions for this 

problem can be written as: 

 0 0, . . ,

0 .

u
a t y i e symmetry

y

u a t y a


 



 
 

(14) 

 

The following dimensionless variables are introduced: 

* *

2
,

( / )

y u
y u

a a p x


  

 
 

(15) 2 22 2
2 0

3

6 ( / )
, .

B aa p x
T M



 

 
 

 

Where T  and M are the dimensionless non-Newtonian 

coefficient and Hartmann number respectively. By 

substituting these changed variables, which were introduced 

in Eq. (15), into Eq. (13) and Eq. (14) we obtain: 

 
2

2 * * 2 *
2 *

*2 * *2
1 0,

d u du d u
T M u

dy dy dy
   

 
 
   

(16) 

*
*

*

* *

0 0,

0 1 .

u
a t y

y

u a t y


 



 
 

(17) 
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In HAM solutions, we should choose the auxiliary linear 

operator, . If the number of boundary conditions and order 

of L increased, the guess function, , which is obtained by 

solving  the differential equation corresponding to , can 

satisfy appropriately the final solution, . For this 

purpose differentiate Eq. (16) ends to following result, 

(neglecting the star for clarity): 

 
3 2

2

3 2

3
2 2

3

[2 ( ) ( )

( ) ( ) ] 0 .

d u du d u
T

dy dy dy

du d u du
M

dy dy dy



  

 

(18) 

 

By Eq.(16), introduce additional boundary condition as: 
22 2

2

2 2
1 0

0 .

d u du d u
T M u

dy dy dy

at y

   



 
 
 

 
 

(19) 

B. Analytical solutions for  

For HAM solutions, we choose auxiliary linear operator and 

corresponding differential equation in the following form: 

( ) ,L u u
 

(20) 

0 ,u
 

(21) 

The guess function is obtained by solving Eq.(21) with 

boundary conditions mentioned in Eq.(17) and Eq.(19) as 

below, 

  2

0 2

1
y (1 ) ,

2
u y

M
 

  

(22) 

Let 
 0, 1P

denotes the embedding parameter and   

indicates non–zero auxiliary parameters. Then we construct 

the following equations [10-13].  The zeroth- order 

deformation equation and corresponding boundary 

conditions are: 

 

 
0(1 ) ( , ) ( )

( , ) ,

P L U y p u y

p N U y p

 


 

(23) 

 

2

2

(1; ) 0, (0; ) 0,

(0; ) (0; )

(0; ) (0; ) 1

U p U p

U p M U p

T U p U p

 

 

   
 

(24) 

The non-linear differential operator 
[ ( , )]N U y p

 is 

constructed by using Eq.(18) as below: 

 

3
2

3

2
2

2 3

3

( , ) ( , )
[ ( , )]

( , ) ( , )
2

2

( ; ) ( , )
.

d U y p dU y p
N U y p M

dy dy

dU y p d U y p
T

dy dy

dU y p d U y p
T

dy dy

 





 
  
 

 
 
   

(25) 

For  and  we have: 

0( ,0) ( ) , ( ,1) ( ) .U y u y U y u y 
 

(26) 

When  increases from 0 to 1 then  varies from 

 to . By Taylor's theorem and using Eq. (26), 

 can be expanded in a power series of  as follows: 

0
1

0

( , ) ( ) ( ) ,

1 ( ( , ))
( ) ,

!

m
m

m

m

m m

p

U y p u y u y p

U y p
u y

m p







  





 

(27) 

In which  is chosen in such a way, that this series 

converges to  at , therefore we have : 

 

0
1

( ) ( ) ( ) .m
m

u y u y u y



  

 
(28) 

 

Differentiating m times the zeroth order deformation Eq. 

(23) with respect to , then dividing by  and substitute 

, we have the mth-order deformation equation as 

below[13]: 

 

 1( ) ( ) ( ),m m mmL u y u y R y  
 

(29) 

In which 

 
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2
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2

,
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l
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l
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m

k
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


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



  

 

  

 

   


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  

  
  
  
  


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(30) 

And 

0, 1
,

1, 1
m

m

m









  

(31) 

With boundary conditions: 

2

2

(1) 0 , (0) 0 ,

(0) ( (0)) (0)

(0) 0.

m m

m m m

m

u u

u T u u

M u

 

  

 
 

(32) 
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Now, we have found the answer by maple software. The 

first-order deformation equation and corresponding 

boundary conditions are presented below: 
2

1 0 0 0

2 2
0 0 0

( ) [ ( ) 2 ( ) ( ( ))

( ( )) ( ) ( ) ] ,

u y u y T u y u y

T u y u y M u y

    

   
 

(33) 

1 1

2 2
1 1 1 1

(1) 0, (0) 0,

(0) ( (0)) (0) (0) 0 .

u u

u T u u M u

 

    
 

(34) 

Solving the above equations subsequently results the 

following answers: 
2 4 6

2 4 6 8

2 2 4 6

2 4 6 8

2 4 6

2 3

1

2

4

1 ( 4 12 12 3 )

18 32 24 8 16

1 ( 4 12 12 3 )

36 32 24 8 16

4
( 4 4 )

1 3

12 (2 )

( )

.

T M M M

M M M M

M T M M M

M M M M

T M M M

M
y

u y

y

   


   

   


   

   







 

(35) 

For higher order, the solutions were too long to be 

mentioned here. For 20th-order approximation the solutions 

converge for all selected values in  when  

ħ=-0.14, as will be shown in section 4. 

For  is obtained by solving Eq.(29) 

with boundary conditions which described in Eq.(32). Then, 

we have the final solution as: 
20

0
1

( ) ( ) ( ) .m
m

u y u y u y


  
 

 

                            (36) 

For example, if   we have following 

expression, 
2

4 3 6

3 8 3 10

4 12 4 14

5 16 6 18

6 20 8 22

8 24 9 26

( ) 0.099239 0.05342

0.039622 8.7495 10

1.3474 10 1.2274 10

1.1183 10 1.0641 10

2.638 10 3.3835 10

1.6923 10 4.0603 10

4.2411 10 3.7487 10

3.7

u y y

y y

y y

y y

y y

y y

y y



 

 

 

 

 

 

  

   

   

   

   

   

 10 28 11 30

13 32 13 34

15 36 16 38

18 40 20 42

150 10 5.4005 10

3.0735 10 2.3484 10

4.7259 10 2.4305 10

5.5480 10 1.8088 10

y y

y y

y y

y y

 

 

 

 

  

   

   

   
 

(37) 

For simplifying, let us consider 
( )u y

in the following from 
20

0
( ) ( ) .i

i
u y g y


 

 
(38) 

We define the average values of functions 
( )g yi in interval 

[0,1]
as 

 
1

0

( ) .i ig g y dy 
 

(39) 

For
( 0 42)i to

, let maxig
be maximum magnitude of 

values
gi and the order of magnitude for

( )g yi  is defined 

as 

 

max

.i
i

i

g
OR

g


 

(40) 

 

By neglecting the terms 
( )g yi whose correspondence 

ORi is less than a base value 
OR

b the expression (37) is 

simplified. For
0.0001OR

b


we have following function. 

 
2

4 3 6

3 8 3 10

( ) 0.099239 0.05342

0.039622 8.7495 10

1.3474 10 1.2274 10

u y y

y y

y y



 

 

  

   
 

 

 

(41) 

C. Convergence of the HAM solution 

The convergence region and rate of solution series can be 

adjusted and controlled by means of the auxiliary parameter 

ħ, as pointed by Liao [11]. In general, by means of the so-

called ħ-curve, it is straightforward to choose an appropriate 

range for ħ which ensures the convergence of the solution 

series. To influence of ħ on the convergence of solution, we 

plot the so-called ħ-curve of    by 20th-order 

approximation, as shown in Fig. 2-5. The solutions 

converge for ħ values which are corresponding to the 

horizontal line segment in ħ curve. It is easy to discover 

that( ħ=-0.14)is suitable value which is used for values of 

and . 
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              Fig. 2. The - validity of 
(0)u

for various  

                                value of T  when 0M    

 

                 Fig. 3. The - validity of 
(0)u

for various  

                              value of T  when 0.5M    

 

                      Fig. 4.  The - validity of 
(0)u

for various  

                                    value of T  when 1M    

 

 

 

 

                  Fig. 5. The - validity of 
(0)u

for various  

                              value of T  when 3M    

 

 

 

D. Results and discussion 

The present study works on new algorithm through which 

by adding the number of boundary conditions and  auxiliary 

linear operator order in HAM, the initial guess function will 

have better convergence to final solution. The main Eq.(16) 

with boundary conditions (17) is solved by numerical 

method. Figures 6 – 11 show comparison between the 

numerical and HAM solutions for  with different 

values of  and  . According to Figures 6 – 11, HAM 

led to appropriate results for nonlinear problems. 

 Figures 6 to 11 are also prepared in order to see the effects 

of dimensionless non-Newtonian constant parameter   

and Hartman number  on the velocity profiles. Figures 6 

and 7, show the effects of the Hartman number on the 

velocity profiles. It can be seen that for constant parameters 

  the velocity profiles are sharpen with decreasing the  

due to magnetic intensity decrease. Figures 8 to 11, show 

the effects of the  on the velocity profiles. It is found that 

the velocity distribution is more uniform with increasing . 

Besides, the results show that the curves  

approaches to curves =0) by increasing M. Subsequently 

results indicate that the behavior of third grade fluid flow 

approaches the Newtonian one with increasing the magnetic 

field strength. 
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                 Fig.6. The result of 
( )u y

 for various M  

                                          when 3T   
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                 Fig.7. The result of 
( )u y

 for various M   

                                            when 3T   
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   Fig.8. The result of 
( )u y

 for various T   

when 0M   
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          Fig.9. The result of 
( )u y

 for various T   

                               when 0.5M   
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          Fig.10. The result of 
( )u y

for various   

                             when 1M   
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          Fig.11. The result of  for various   

                             when 3M   
 

http://www.ijtra.com/


International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Special Issue 28 (August, 2015), PP. 77-83 

 

Page | 83  

 

II.  CONCLUSION 

  In the present study, the MHD fully developed third grade 

fluid flow in a channel has been considered by using  

Homotopy Analysis Method. In comparison with other 

works, we use a new algorithm to guess an initial function 

through which the convergence series solution can be found 

faster. It is noteworthy; this technique can be used in similar 

methods. The obtained analytical solution in comparison 

with the numerical ones represents a remarkable accuracy. 

Graphical results are presented to investigate the effects of 

physical parameters Hartman number  and 

dimensionless non-Newtonian constant parameter  on 

the velocity profiles.  The following remarkable results can 

be concluded: 

 It is shown that the more suitable guess function 

obtained by differentiating main equation and 

introducing additional boundary condition. 

 It is illustrated that by using order of magnitude 

definition,  the series solution is simplified which 

is useful for analyzing energy equation.   

 The results indicate that the behavior of third grade 

fluid flow approached the Newtonian one with 

increasing the magnetic field strength. 

 It can be seen that for constant parameters   the 

velocity profiles are sharpen with decreasing the 

. 

 It is illustrated that the velocity distribution is more 

uniform with increasing . 

          REFERENCES 

[1] J. Hartmann, Hg-Dynamics-I. Math-Fys. Medd., 15, No. 

6(1937) 

[2] K. Sadeghy, N. Khabazi, S.M. Taghavi, 

Magnetohydrodynamic (MHD) flows of viscoelastic fluids 

in converging / diverging channels, International Journal of 

Engineering Science.45 (11) (2007) 923–938. 

[3] Nader. Pourmahmoud, Mahtab. Mansoor, Mostafa. 

Rahimi Eosboee, Pedram. Mohajeri Khameneh, 

Investigation of MHD Flow of Compressible Fluid in a 

Channel with Porous Walls, Australian J. Basic and Applied 

Sciences. 5 (6) (2011) 475-483. 

[4] Serdar. Baris, Flow of a Second-Grade Visco-Elastic 

Fluid in a Porous Converging Channel, Turkish J. Eng. Env. 

Sci. 27 (2003)  73 - 81. 

[5] Muhammad. R. mohyuddin, Ehsan. Ellahi. Ashraf, 

Inverse solutions for a second-grade fluid for porous 

medium channel and Hall current effects, Proc. Indian 

Acad. Sci. (Math. Sci. 114(1)(2004) 79–96. 

[6 ] Ishtiaq. Ali, Rehan.A. Shah, S. Islam,  Aftab. Khan, 

A.M, Siddiqui, Homotopy Perturbation Solution of Second 

Grade Fluidthrough Channels with Porous Walls of 

Different Permeability, World Applied Sciences Journal 8 

(5)(2010) 536-542. 

[7] Dileep. S. Chauhan and Vikas. Kumar, Unsteady flow of 

a non-Newtonian second grade fluid in a channel partially 

filled by a porous medium, Advances in Applied Science 

Research 3 (1)(2012) 75-94. 

[8] Ehsan. Roohi,  Shahab. Kharazmi, Yaghoub. Farjami, 

Application of the homotopy method for analytical solution 

of non-Newtonian channel flows,Phys. Scr. 79 (2009) 

065009 (7pp). 

[9]Muhammad. R. Mohyuddin , Muhammad . A. Sadiq , 

A.M. Siddiqui, The Flows of a Third Grade Fluid through 

infinite Planes, Journal of Mathematics and Computer 

Science 1(2)(2010) 106-121. 

[10] Shijun. Liao, Homotopy Analysis Method: A New 

Analytical Technique for Nonlinear Problems, 

Communication in Nonlinear Science & Numerical 

Simulation  2(2) (1997) 95-100. 

[11] Shijun. Liao, Beyond perturbation : introduction to 

homotopy analysis method, CHAPMAN & HALL/CRC 

2004. 

[12] Shijun. Liao, On the homotopy analysis method for 

nonlinear problems, Applied Mathematics and Computation  

147 (2004) 499–513. 

[13] Shijun. Liao, Notes on the homotopy analysis method: 

Some definitions and theorems, Commun Nonlinear Sci 

Numer Simulat. 14 (2009) 983–997. 

[14] a. Mehmood, A. Ali, T. Shah, Heat transfer analysis of 

unsteady boundary layer flow by homotopy analysis 

method, Commun Nonlinear Sci Numer Simul. 13(5)(2008) 

902-912. 

[15]M.M. Rashidi, G. Domairry, S. Dinarvand, 

Approximate solutions for the Burger and regularized long 

wave equations by means of the homotopy analysis method, 

Commun Nonlinear Sci Numer Simulat. 14(3)(2009) 708-

717. 

[16] G. Domairry, M. Fazeli, Homotopy Analysis method to 

determine the fin efficiency of convective straight fins with 

temperature dependent thermal conductivity, Commun 

Nonlinear Sci Numer Simulat. 14(2)(2009) 489-499. 

[17] D.D. Ganji, Houman B. Rokni, M.G. Sfahani, S.S. 

Ganji, Approximate traveling wave solutions for coupled 

Whitham–Broer–Kaup shallow water, Advances in 

Engineering Software  41(7)(2010) 956-961. 

 [18]A.A. Imani, D.D. Ganji, Houman B. Rokni, H. 

Latifizadeh, Esmail Hesameddini, M. Hadi Rafiee, 

Approximate traveling wave solution for shallow water 

wave equation, Applied Mathematical Modelling  

36(4)(2012) 1550-1557. 

 

http://www.ijtra.com/
http://www.sciencedirect.com/science/article/pii/S0020722507000547
http://www.sciencedirect.com/science/article/pii/S0020722507000547
http://www.insipub.com/ajbas/2011/june-2011/475-483.pdf
http://www.insipub.com/ajbas/2011/june-2011/475-483.pdf
http://www.insipub.com/ajbas/2011/june-2011/475-483.pdf
http://www.insipub.com/ajbas/2011/june-2011/475-483.pdf
http://www.insipub.com/ajbas/2011/june-2011/475-483.pdf
http://idosi.org/wasj/wasj8(5)10/3.pdf
http://idosi.org/wasj/wasj8(5)10/3.pdf
http://idosi.org/wasj/wasj8(5)10/3.pdf
http://idosi.org/wasj/wasj8(5)10/3.pdf
http://idosi.org/wasj/wasj8(5)10/3.pdf
http://www.sciencedirect.com/science/article/pii/S096599781000058X
http://www.sciencedirect.com/science/article/pii/S096599781000058X
http://www.sciencedirect.com/science/article/pii/S0307904X11005749
http://www.sciencedirect.com/science/article/pii/S0307904X11005749

