
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 28-32

28 | P a g e

ENHANCING THE ADAPTIVITY OF

ENCRYPTION FOR STORAGE ELECTRONIC

DOCUMENTS

Nour Mahmoud Khafajah , Kamaruzzaman

Seman
Faculty of Science and Technology,

University Science Islam Malaysia (USIM)

 71800 Nilai, Negari Sembilan, Malaysia.

Osama Ahmed Khashan
Faculty of Information Science and Technology,

National University of Malaysia (UKM)

43600 Bangi, Selangor, Malaysia

Abstract— the rapid advancement in the domain of

information technology has increased the amount of our sensitive

documents stored on disk drives and removable storage media.

Although many encryption applications and software protection

systems are available to provide trusted protection of those

documents, they often fail to pay sufficient attention to the

increasing challenges of satisfying security implications on

storage domain. This, thus, results in greater chances for security

breaches and intrusion attacks, in addition to the greatly

increased costs to business and end users. Developing a storage

protection system based on involving the reuse approach in every

phase of a system development can help in analyzing risks and

security policies, identifying threats, and determining security

requirements. This paper discusses the value of reusability for

specifying security requirements of current storage

cryptographic systems. Then, we propose a cryptographic model

based on a filter driver technology focuses on protecting storage

document files. Such proposed model can be able to resolve

obstacles to the security requirements identified, and to meet its

goal of a high assurance storage protection system.

Index Terms— Reusability, file system filter driver,

transparent encryption, stored documents protection.

I. INTRODUCTION

Electronic documents touch almost every aspects of our

daily life in modern information technology. Many sensitive

documents of private users’ information and valuable business

details are stored on their computers; where the leak of such

confidential documents can result in expose user privacy, heavy

financial losses, losing revenue, compromised ability to

compete, and much more. Therefore, security of electronic

documents at storage domain becomes an increasingly growing

problem and challenging issue, in addition to the essential need

of security expertise to meet non-functional security

requirements [1].

The security of data in storage domain is needed for long

term and may be in terms of years, unlike communication,

where the security is only needed in terms of seconds and once

the data reach its target, the job is done. Secure storage

software applications nowadays are more and more ubiquitous,

but they are so far vulnerable, heterogeneous, and safety-

critical. Moreover, the attacks and threats become more and

more widespread, sophisticated and malicious, which may be

mounted by various kinds of attackers. Thus, this make the data

at rest are always at risk due both to various types of threats

and the vulnerabilities of protection system that may have [2].

Security requirements engineering is an important part of a

system development process to address different software

security issues at the early stage of development cycle, and then

provides methods and techniques that are able to tackle such

specified security issues [3]. The security requirements of any

system roughly depend on the environment in which the system

is deployed. Furthermore, security requirements tend to be

more standardized with their associated security mechanism

(i.e. cryptography, authentication, etc.) and their architectural

mechanism. Thus, this can help in identifying the optimum way

of fulfilling the security requirements [4].

Reuse of security requirements can efficiently help in

discovering security issues of existing security systems in order

to improve the quality of development processes, inspire new

ideas from reusable components, and significantly save

development time and cost [5, 6].

Most of storage security systems have been developed with

poor understanding of security concerns, where the

specification of security requirements are often defined as an

incomplete subset and typically not integrated with different

phases of the system development. Even if there is an attempt

to define security requirements, the developers tend to describe

the design solutions using standard security requirements rather

than making declarative propositions of real requirements with

regard to the required protection level [7]. Therefore, storage

protection systems are recognized to be poor-quality software

protections, and they are always influenced by the security

requirements [8].

Storage encryption still a far more cost-effective solution

among other storage protections to ensure the primary security

aspects of confidentiality, integrity and availability of storage

data in the face of a hostile intruder, if it’s properly

implemented and appropriately applied [9]. As consequence, a

large number of cryptographic developments for guaranteeing

the trusted protection of the storage; nevertheless, the security

level of a cryptographic scheme may be reasonable from its

designer has in mind, but the attack is never anticipated. Thus,

in many cases it has been found that the problem is not in the

cryptographic design as much as understanding of security

requirements for storage encryption.

In this paper, we specify the security-related requirements

of cryptographic systems on storage domain. Then, we based

on the reuse approach for the specified requirements to propose

a storage cryptosystem model that can be able to link the

security of the storage documents, the risk environment and the

security requirements to securely manage, control, monitor,

distribute and to permit the usage of the cryptographic

mechanism.

The rest of this paper is organized as follows. Section 2

gives an overview of storage cryptosystem models. Section 3

discusses the problems and challenges with storage encryption.

Section 4 describes the security requirements for storage

domain cryptographic systems. The proposed model of storage

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 28-32

29 | P a g e

cryptographic documents is presented in Section 5, and the

conclusion is given in section 6.

II. STORAGE CRYPTOSYSTEMS OVERVIEW

A cryptographic scheme in the storage domain shall be a set

of hardware, software, or some combination thereof that

implements cryptographic functions or processes, including

cryptographic algorithms and, parameters, key generation, and

is contained within a defined cryptographic boundary.

Software-based cryptosystems are nowadays widely used to

provide the encryption utility with several different options.

These software-based cryptosystems can be carried out using

third party encryption applications that are mounted on the user

space to provide generic users with cryptographic service for

different storage data types and platforms, such as such as

crypt, aescrypt, Cryptainer, BitLocker, etc. These application

schemes work by taking the file name of the file that needs to

be encrypted and the password as inputs to produce a ciphered

version of that file. Therefore, the user is required to supply the

key (password) for each file he needs to encrypt and required to

remember it in order to retrieve the file back from the disk for

read. Some encryption applications have been implemented

with built-in cryptographic libraries that are able to provide

automated cryptographic functionality when a file’s data is

written or read, such as a text editor [10].

Storage encryption can be implemented as a basic part of

the operating system file systems to perform all cryptographic

and key management operations. The encryption mechanism is

carried out at different location layers to encrypt or decrypt the

whole single or multiple disk partitions, or to encrypt

individual files or directories. It can be performed as a user

space encryption layer using FUSE (Filesystem in Userspace)

technology [11] for Linux platform. It can also be operated as a

middleware layer inside the kernel space by inserting a

cryptographic file system layer in the level between a user

space and a real file system [12]. The cryptographic file system

can be also as a low level encryption layer operates at the lower

level of abstraction under the real file system to encrypt the

entire disk or partition [13].

III. PROBLEMS AND CHALLENGES OF STORAGE

ENCRYPTION

Designing a cryptosystem for storage domain is difficult

and error-prone task that may affect the system security and

performance, if it is not properly implemented [14]. This is due

to a number of issues for this state of affairs that should be

considered while developing a practical storage cryptosystem.

The first issue is related to the long latency of stored data

which is in possibly years, where the storage latency roughly

indicates the amount of time that the attacker needs to analyze

the security applied. Unlike ephemeral transmission where the

security still occurs within a short period of time and both of

the communicators can participate in various protection

methods to ensure a secure communication, such as

cryptographic methods, key agreement, authentication

protocols, etc. [9].

Cryptography is known to be a mathematically heavy

operation, and the disk storage is manipulating with quantum

amount of stored data that need to be encrypted or decrypted

each time. Therefore, the frequent read and write of stored files

with cryptographic service, as well as including primary

operations for management, operational and technical controls

that involved during data encryption will have a greater impact

on the system performance and responding time, which thus

resulted in the reduction of a system usage [15].

As a matter of fact, the selection of in-appropriate

cryptographic methods and related variables leads the system to

be easily broken even without a user is being aware of this fact.

However, this can be sometimes more dangerous than using no

cryptography at all, since the user can be deceiving because of

his thought the data remains confidential in the storage [16].

Key management is another challenging issue, where the

risk occurs when reading encrypted data with a lost or

forgetting keys. Therefore, any problem occurs with any of the

keys can render the data inaccessible when it is requested, and

creating any new unrelated key to the previously encrypted data

will do not help. On the other hand, storing keys in plain on

disk or sharing them among different users is not a desired

option in storage domain [17].

Backup of storage data is another attractive issue to the

confidential storage when a user is not using a proper a secure

backup method with the encryption scheme. Here, the attacker

can simply collect the backup versions and then extracts the

plaintexts without even access the keys. The in-place update of

file contents to the same file location may lead to compromise

the uniqueness of keys and IVs relative to data content if the

keys and IVs are generated as a function of data positions

within a file or storage medium [10].

IV. SECURITY REQUIREMENTS FOR STORAGE

CRYPTOSYSTEMS

A storage cryptosystem for electronic documents protection

should be able to ensure of documents security, authentication,

confidentiality, and maintain privacy and integrity. Also, it

should be able to guarantee of the high read and write response

efficiency. In this section, we define the security requirements

of storage encryption for electronic documents.

Security: a cryptosystem must grant a high amount of

security attached within cryptography for protecting digital

documents. Typically, selecting the appropriate encryption

algorithm and related parameters, the operation mode, the

length and kind of the secret keys, and using a combination of

symmetric and asymmetric algorithms, are the important

factors in a cryptographic system to provide maximum security

strength [10]. The stronger cryptographic scheme should be

also able to control and manage the usage of keys, prevention

and detection of any illegal or unauthorized action to reveal the

keys [18]. However, the effective way to prove security level of

any cryptosystem is to rigorously prove the analyticity of the

applied cryptographic scheme, where the stronger security is

the stronger for resisting any kind of cryptanalysis attack [14].

Integrity: the property where the documents hold when

they have not unauthorized modified. In the documents

encryption systems, the integrity means that the documents are

kept in storage domain as they are supposed to be without

tampering. This can be provided using several techniques, such

as digital signature, one-way hash functions, Message

Authentication Code (MAC) and the combined approach

(HMAC) from the one-way hash and the MAC, to provide

higher integrity level.

Authentication: the process of verifying a principles

claimed identity. The authentication in the storage

cryptosystems is provided by the logon-password. However,

keeping users’ list passwords in a machine will become a target

for attacker. Moreover, encrypting the password also will not

help, because the user needs to decrypt the password each time

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 28-32

30 | P a g e

logon the system, which hence may be compromised using

dictionary attack. Various proposed mechanisms can be

followed to improve a password protection, such as salting

password, time-stamp and one-time password, etc.

Confidentiality: also known as secrecy or privacy, where

the breaches of confidentiality range from embarrassing to the

disastrous. It guarantees that storage document files cannot be

accessed by unauthorized parties. This can be realized by using

cryptography in addition to the access control mechanisms

through keeping documents stored in encrypted form only, and

the system must contain the right access control to decrypt

them [1].

High response efficiency: the encryption performance in

the software-based varies between using user space encryption

applications and the cryptographic file systems of different

locations. However, the latter approach is usually optimizing

the performance because it is getting the encryption and

integrity protection techniques together, and all related

computations are performed in highly seamless and compatible

manner without many data copies between a kernel and a user

space [12].

V. PROPOSED MODEL

The overall objective of this work is to address the

cryptographic requirements of storage domain by reusing them

in more specific and efficient way to design our cryptographic

scheme for storage electronic documents. The designed model

cans trade-off between security and performance to provide

encryption and decryption of stored documents in an automatic

and transparent manner, and with minimum interaction from a

user. In order to achieve this objective, the encryption,

decryption and key management processes should be done

transparently, since the minimal amount of user interaction to

setup and use the system effectively increases the security and

usability [19]. Therefore, a new cryptographic file system filter

driver exclusive for stored document files is inserted in a

middleware level inside the kernel. This cryptographic filter

driver is attached between the I\O manager and file system

driver inside the Microsoft Windows kernel.

Further, to emphasize on the following functions: Firstly,

the cryptographic filter driver will allow the user to carry on

with his work without adding overhead for ciphering or

effecting on his normal operations. Secondly, the cryptographic

filter driver automatically recognizes the electronic document

file once it detects that the process is trying to open or save a

document file on the local disk. Thirdly, the cryptographic filter

driver automatically encrypts or decrypts the document file

contents as per-file basis with high secret and seamless manner.

Key management is another task for this cryptographic filter

driver since the user will never manipulate with a manual key

management and will not pay more attention to the related

problems. Figure 1 shows the structure of the file system filter

driver and the interaction between other parts inside the

Windows kernel.

Fig. 1. File system filter driver structure.

A. Working Structure

When a user threads a request to create, read or write a file

stored on a local disk, the request will be passed to the I/O

Manager layer which sits above the real file system. Here, the

I/O Manager makes the required process like parsing the

filename, finding the physical location on the local disk, and

further builds the I/O Request Packets (IRPs). Finally, it routs

the IRPs directly to the appropriate device driver to process the

request or a part of the request that it can handle. Any

implemented file system filter driver of specified functionality

can be attached and integrated between the I/O Manager and

the real file system driver. So, when the IRP request is sent to

the local disk driver with a specified function call, the attached

filter driver will effectively intercept that request to perform its

task for which it was being designed.

In accordance, a new cryptographic filter driver is designed

to provide a mandatory and transparent encryption, decryption

and key management operations for the storage document files.

Thus, the cryptographic services would be performed online

without any more interaction from the user or changing on his

habits. The cryptographic filter driver provides a uniform

interface for all applications and underlying kernel file systems.

This means the transparent encryption and decryption of a

document file will be carried out without being bothered from

which application that a document is coming from. In

consequence, the designed cryptographic model will be

compatible with all applications that work with electronic

documents, also provide a user with a very convenient

environment to work.

When a request of writing a new document file into a local

disk is received, the cryptographic filter driver will

automatically encrypt the document contained in the IRP

before stored on the local disk. On the other hand, if the IRP

request is to read a stored document file, the cryptographic

filter driver will transparently decrypt it on-the-fly and then

send it in plain form to the user or application issuing a system

call. The cryptographic file system filter driver can be easily

implemented and deployed to accomplish its features in high

efficient and reliable way, and without any required

modification on the operating system functions or any of the

internal kernel structure.

Figure 2 shows the architecture of a designed model for the

cryptographic file system filter driver. Inside the designed

model there are two components, the key management unit and

the cryptographic unit.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 28-32

31 | P a g e

B. Cryptographic Unit

When a user threads a request to write or read an electronic

document file, the cryptographic filter driver will immediately

initialize the encryption algorithm and other encryption

parameters which are realized on the cryptographic unit. The

whole document content will be firstly divided into number of

blocks of a fixed size of 16 bytes each.

Fig. 2. Design Model of Cryptographic Filter Driver.

The AES as a fast symmetric encryption algorithm with

128-bit default key length is picked. We also chose the Cipher

Block Chaining (CBC) as an encryption mode. In order to

guarantee of achieving a better security level, the uniqueness

requirement for the initialization vector (IV) across all

document files which are encrypted under a given encryption

key should be realized.

Similarly, read or copy a stored document file is performed

transparently in reverse order. When a cryptographic filter

driver recognizes that the IRP request is to read a stored

document from a local disk. The cryptographic filter driver

immediately responds once the read operation is completing

from the disk, and subsequently performs the decryption

process. The key management unit is firstly recalling the

encryption key and the corresponding IV. Subsequently, the

cryptographic unit will initiate the encryption cipher and

related parameters that are required for decryption operation. It

then uses the encryption key to decipher all document blocks.

Once the plain document is generated, it will be directly sent

back to the caller on the user space.

C. Key Management Unit

Losing or forgetting encryption keys due to the long-time

storage means losing access to all corresponding encrypted data

stored on disk. Moreover, storing keys in plain form on the

hard disk will increase its chances to be stolen and leaked

easily. Therefore, in order to enforce the security of the

encryption keys, and to reduce the risks come from brute-force

attack, the cryptographic filter driver will be used to protect,

manage and monitor the keys.

Key management unit involves the operations of creating,

using and retaining the encryption keys. However, using a

single key to encrypt all document files is not secure, since if

the attacker successes to obtain the secret key for one document

file, he would be able to recover all other encrypted documents.

Therefore, in this design model, each document file will be

encrypted using different symmetric encryption key generated

randomly. In order to provide a secure protection for the used

symmetric encryption keys, we proposed to use a public key

encryption algorithm to encrypt the file’s encryption key using

a corresponding user’s public key. The encrypted key will be

then stored as extended attributes on the header of the

document file. So, once the encrypted document file is being

read from the local disk, the key management unit directly

extracts the encrypted key from the header file and calls the

user’s private key to decrypt the symmetric key. Finally, it

sends the encryption key to the cryptographic unit to perform

the decryption operation.

VI. CONCLUSION

In this paper, we have described the challenges and issues

related cryptography on the storage domain. Then we studied

the cryptographic requirements that should be considered while

designing a cryptographic system for storage domain.

Therefore, we based on the reuse approach for the identified

cryptographic requirements to design a transparent storage

encryption model that uses a file system filter driver technology

for Windows. The model is able to dynamically and

transparently encrypt and decrypt the electronic document files

stored on the local disk, on the fly. The cryptographic model

structured from two component units are the cryptographic and

key management units. This paper also detailed analyzes the

key technologies which can be used to implement the proposed

model.

REFERENCES

[1] S. Na, and S. Lee, “Design of security mechanism for electronic

document repository system,” IEEE International Conference on

Convergence and Hybrid Information Technology, pp. 708-715,

2008.

[2] A. Lamsweerde, S. Brohez, R. Landtsheer and D. Janssens,

“From system goals to intruder anti-goals: attack generation and

resolution for security requirements engineering,” Proceedings

of the RE’03 Workshop on Requirements for High Assurance

Systems, Monterey (CA), pp. 49-56, 2003.

[3] D. Firesmith, “Specifying reusable security requirements,”

Journal of Object Technology, vol.3, pp. 61-75, 2004.

[4] R. Villarroel, E. Ferna´ndez-Medina and M. Piattini, “Secure

information systems development- a survey and comparison,”

Journal of Computer & Security, vol.24, pp. 308-321, 2005.

[5] G. Sindre, D. Firesmith and A. Opdahl, “A reuse-based approach

to determining security requirements,” the 9th International

Workshop on Requirements Engineering: Foundation for

Software Quality, pp. 16-25, 2003.

[6] J. Jensen, I. Tøndel and H. Andresen, “Reusable security

requirements for healthcare applications,” IEEE International

Conference on Availability, Reliability and Security, pp. 380-

385, 2009.

[7] D. Mellado, C. Blanco, L. Sánchez, and E. Fernández-Medina,

“A systematic review of security requirements engineering,”

Journal of Computer Standards & Interfaces, vol.32, pp.153-165,

2010.

[8] S. Konrad, B. Cheng, L. Campbell and R. Wassermann, “Using

security patterns to model and analyze security requirements,”

IEEE Workshop on Requirements for High Assurance Systems,

pp. 13-22, 2003.

[9] J. Hughes, “IEEE standard for encrypted storage,” Computer,

vol.37, pp. 110-112, 2004.

[10] S. Diesburg, C. Meyers, D. Lary and A. Wang, “When

cryptography meets storage,” 4th ACM international workshop

on Storage security and survivability, pp. 11-20, 2008.

[11] M. Szeredi, “Filesystem in Userspace,” Available in

http://sourceforge.net, 2014.

[12] E. Zadok, I. Badulescu and A. Shender, “Cryptfs: a stackable

vnode level encryp-tion file system,” Technical Report, No.

CUCS-021-98, Computer Science Department, Columbia

University, 1998.

http://sourceforge.net/

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume-2, Special Issue 1 (July-Aug 2014), PP. 28-32

32 | P a g e

[13] R. C. Dowdeswell and J. Ioannidis, “The CryptoGraphic disk

driver,” the Annual USENIX Technical Conference, pp. 179-

186, 2003.

[14] I. Damgard, “A “proof-reading” of some issues in

cryptography,” the 34th International Colloquium in Automata,

Languages and Programming, Springer LNCS, vol.4596, pp. 2-

11, 2007.

[15] M. Alomari, K. Samsudin and A. Ramli, “A parallel XTS

encryption mode of operation,” IEEE Student Conference on

Research and Development, pp. 172-175, 2009.

[16] E. R. Weippl, Security in e-learning, Vienna, Austria: Springer,

2005, pp. 131-153.

[17] S. Diesburg and A. Wang, “A survey of confidential data storage

and deletion methods”. Journal of ACM Computing Surveys,

vol.43, 2010.

[18] M.W. Storer, K.M. Greenan and E.L. Miller, “POTSHARDS:

Secure long-term storage without encryption,” the USENIX

Annual Technical Conference, pp. 143–156, 2007.

[19] R.K. Pal and I. Sengupta, “Enhancing file data security in Linux

operating system by integrating secure file system,” IEEE

Symposium on Computational Intelligence in Cyber Security,

pp. 45-52, 2009.

