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Abstract— Replacing the sequence of vectors with a net indexed
by an ordered set where the set is endowed with a measure space,
we obtain a generalization of discrete frames which is called
continuous p-frames. The problem of combining the synthesis
and analysis operators of these frames is solved in this paper. We
also prove that a perturbation of a weakly measurable function G
of a cp-frame F is again a cp-frame when there is a small enough
gap between F and G.

Index Terms— :
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Continuous p-frames, Duality mapping,

I. INTRODUCTION

A discrete frame is a countable family of elements
in a separable Hilbert space which allows stable not
necessarily unique decomposition of arbitrary
elements into expansions of the frame elements.
This concept was generalized by Ali, Antoine and
Gazeau [1], to families indexed by an ordered set
endowed with a Radon measure. These frames are
known as continuous frames. For more studies
about frame theory and continuous frames we refer
to [1, 3, 4, 5]. We observe that various
generalizations of frames have been proposed
recently.

Throughout this paper, (Q,u) will be a measure
space and p is a positive, o-finite measure. X is a
Banach space with dual X*. We choose 1<p<co, and

11 B
g such that B+ azl. The normed dual X of a Banach

space X is itself a Banach space and hence has a
normed dual of its own, denoted by X. The
mapping A X—X", x—>Ax defines a unique
AxeX™ by the equation, (xX)=(x",A,x) for each
x'eX” and ||A,x|=|x| for each xeX. So A :X—>X"

is an isometric isomorphism of X onto a closed
subspace of X™. If X is a reflexive Banach space
then A :X—X" is an isometric isomorphism of X

onto X

A. 2 PRELIMINARIES

Definition 2.1. A countable family {g}i;cX" is a

p-frame for X if there exist constants A,B>0 such
that

Alfl< (a1 <8t

{gi}{'i1 is a p-Bessel sequence if at least the upper p-
frame condition is satisfied.

Definition 2.2. Let H be a complex Hilbert space
and (£2,) be a measure space. The mapping
F:©2—H is called a continuous frame for H with
respect to (€2,.), if:

(i) F is weakly measurable, i.e., for each feH,
w — {f,F(w) isameasurable function on (2,
(i) There exist constants A,B>0 such that

Af[" < [ [(F . F(@)?du(@) < B[ f e H.
(2.2)

Now we recall some theorems and lemmas which
we use in this paper.

Lemma 2.3. [8]. Suppose X and Y are Banach
spaces and T eB(X,Y). Then R(T)=Y if and only if

HT*y*‘ > cHy*H for some constant ¢>0 and for each
y ey’
Theorem 2.4. [9]. LP(Qu) is isometrically

isomorphism to the dual space of LY2,.) by the
mapping KP:LP(Q, 1) > LY, 1),
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KPu(d= | (@)K w)du(w) for all welP(Qu)
Q
and ¢ e L'(Q, u).

We can define the isometrical isomorphism
Kq=(Kp)*Aq:Lq(Q,y)—)Lp(_Q,y)* , for which A,
is the isometrical isomorphism of L%(Q, ) onto
LY(2.)"

Lemma 25. [7]. Given a bounded operator
U:X—Y, the adjoint U:Y"—X" is surjective if and
only if U has a bounded inverse on its range
R(V).

B. 3 CP-FRAMES

Definition 3.1. The mapping F:Q2—X" is called a
continuous p-frame or a cp-frame for X with
respect to (Qu) if:

(i) F is weakly measurable, i.e., for each xe&X,
WX, F(w) )=F(w)(X) is measurable on Q.

(ii) There exist positive constants A and B such
that

Al < ([[(x, F (@) dua(e))” < Bl

3.1)

The constants A and B are called the lower and
upper cp-frame bounds, respectively. F is called a
tight cp-frame if A and B can be chosen such that
A=B, and a Parseval cp-frame if A and B can be
chosen such that A=B=1. F is called a cp-Bessel
mapping for X with respect to (£2,4), if (i) and the
second inequality in (3.1) holds. In this case B is
called cp-Bessel constant.

If in the definition of a cp-frame, the measure space
Q= N and n be the counting measure, then our cp-
frame will be a p-frame and so we expect that
some properties of p-frames can be satisfied in cp-
frames.

Throughout this paper, we simply say F is a cp-
frame for X and F is a cp-Bessel mapping for X,
instead of F is a cp-frame for X with respect to
(Q,u) and F is a cp-Bessel mapping for X with
respect to (Q,u), respectively.
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Our study of a cp-frame is based on analysis of two
operators UF:X—>Lp(Q, L), defined by

U x(@) =(x,F(@)),xe X,0eQ, (3.2)

and T_LY(Q,p)—>X
by

which is weakly defined

Tep(X) = (X, Ted) = I¢(w)<X, F(o)du(w). ¢ L(Q, 1), x <.

(3.3)
It is clear that if F is a cp-Bessel mapping, then U_

is well-defined and bounded operator. U_ is called
the analysis and T_ is called the synthesis operator
of F.

Lemma 3.2. Let F be a cp-frame for X. Then the
operator UF:XaLp(.Q,,u) , given by (3.2), has a

closed range and X is reflexive.
Proof. It is easy to verify that U_ has a closed

range. By the cp-frame condition, X is isomorphic
to R(UD), but R(U_) is reflexive because it is a

closed subspace of the reflexive space LP(£2u)
and therefore X is reflexive.

Theorem 3.3 Let F:2—5X be a cp-Bessel
mapping for X with Bessel bound B. Then the

operator T_:LYQ2u4)—»X" , weakly defined in
(3.3), is well-defined, linear and |T.|< B.

Lemma 3.4. Let F:Q2—»X be a cp-Bessel mappin
g for X. Then:

(i) Up=T (K%~
(i) If X is reflexive, then T;:KPUFA;(l.

Theorem 3.5 Let X be a reflexive Banach space
and F:02—X" be weakly measurable. If the mapping
T:LY(24)—»X"  weakly defined by

(X, Teg) = [ @)X, F(0))d u(®), § & L'(Q 1), x € X.

is a bounded operator and |[T.| < B, then F is a cp-
Bessel mapping for X.
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Proof. Since T. is well-defined and bounded, for all
feX and peL%(Q, 1), we have

(T =(Tep, By = [ o)A, f,F(@))du(o).

define
Y, is

For each feXx”, we
v, Q—>C,o—> (A, f,F(w)). Since
measurable and for each ¢ € L(Q, 1),

<o,

[ (@) (@)d ()
Q
w, € L°(Q, 1), by Theorem 2.4, we have

v (@) =(KP) (T f)(0),0eQ..
Hence for each xe X ,

([lox F@)| du(@)® =|(K*) T Axx| = [T Axx]|

< HTF*

x|<BJx].

Theorem 3.6. Let X be a reflexive Banach space
and F:2—X" be a weakly measurable mapping.
Then F is a cp-frame for X if and only if T_ is a

well-defined and bounded operator of LY(¢2 )
onto X'. In this case, the frame bounds are

wo_q|I-1
ey and [

Proof. By Theorem 3.3 and 3.5, the upper cp-frame
condition satisfies if and only if T.is well-defined

and bounded operator of L%«2,4) onto X". Now
suppose that F is a cp-feame for X. Then U. has a

bounded inverse on its range R(U.)and by Lemma
2.5, U is surjective and therefore T is a well-

defined and bounded operator of L2, 4)
X". By Lemma 3.4, for each x e X ,

U= (<P) T A =T Asx| < T ]

onto

On the other hand since  T. is bounded and

surjective. T.'is one to one, hence T. has a
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bounded inverse on R(T.”). So by Lemma 3.4, for
each xe X we have

Xl =[x =Ty T Ao <[y U
C.4 CP-FRAME MAPPING AND ITS INVERTIBILITY

In this section, in order to make a cp-frame
mapping, we need a mapping from the Banach
space LP(QQ,un) into it’s dual space, LYQ,u)

For this aim we use the concept of duality mapping.

Definition 4.1. The mapping ¢, of X into the set of

subsets of X", defined by
gx={x e X" 1 x (%) = |x]x[,[x"

X7 = [
is called the duality mapping on X.

By the Hahn-Banach theorem, for each xeX, ¢, X is
nonempty and ¢,0=0. In general the duality
mapping is set-valued, but for certain spaces it is
single-valued and such spaces are called smooth.

Definition 4.2. Let F:.Q2—X" be a cp-frame for X.
The bounded mapping SF:X»X* defined by

SF:TF(KQ)*1¢L,)( oyYr Wil be called a cp-frame
mapping of F.

Proposition 4.3. Suppose that F:2—X" is a cp-
frame for X with frame bounds A and B. Then S_
has the following properties:

(1) S.=U¢ Lp(Q#)UF :

(i) A?|X|" < Sex(x) < BYX[, x e X..

Definition 4.4. A mapping [.,.] from XxX into R is
said to be a semi-inner product on X if it has
these properties:

(i) [x,x] >0 for all xeX and [x,x]=0 iff x=0.

(i) [ox+pyzl=alx,z]+Aly,z] for all ¢,feR and
for all x,y,zeX.

(iii) |Dxy1 *<Ix X1 [y.y] for al I xyeX.
The element xeX is called (Giles) orthogonal to the
element yeX (denoted by x_Ly), if [y,x]=0. If M is a

linear subspace of X, the notation M* is used to
show the orthogonal complement of M in Giles

sense, i.e. M*={xeX; xLy, yeM}
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Remark 4.5. Let F:.Q—5X be a cp-frame for X.

Suppose that Ker(T.)) and (Ker(TF))l are
topologically complementary in L9%¢2,) , then
clearly the operator TFl(Ker(T ) Is invertible and

F

Te=(T | ercryy) " 18 @ bounded right inverse of T .
F

Definition 4.6. Let F2.Q2—X" be a cp-frame for X.
Suppose that Ker(T.) and (Ker(T))* are
topologically complementary in L2 , we
define the mapping K:X" X by
K=A(TE) b, T

Lemma 4.7. Let F:.2—X" be a cp-frame for X.
Suppose that Ker(T.)) and (Ker(TF))l are
topologically complementary in LY2,2) . Then:

(i) K(9)(9) zé”g”i , where B denotes an upper

cp-frame bound for F.

Moreover, when the operator TéTF is adjoint
abelian, the following assertions hold:

(ii) S, is invertible and S =K.

-1 -1 _ L
— py-1
(iii) S =Ug (KP) ¢Lq(gﬂ)TF.
D.5 DUALS OF CP-BESSEL MAPPINGS

In this section, X is an infinite dimensional,

reflexive Banach space.

Definition 5.1. [6]. A sequence {ei}{'i1 in X is called
a Schauder basis of X, if for each xeX there is a
unique sequence of scalars (ai){'il, called the

0
coordinates of x, such that x= >’ ae.

i=1
Let {ei}?i1 be a Schauder basis of a Banach space X.

o0

For je N and x= X ae, denote fj(x):aj. Using
i=1

Theorem 6.5 in [6], fjeX*. The functionals {f }Z; are

called the associated biorthogonal functionals
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(coordinate functionals) to {ei}j’il and for each xeX,

o0
we have x= 3 f(x)e..

i=1
We will denote the biorthogonal functionals {f} by
{e:}, and say that {ei,e:} is a Schauder basis of X.

Theorem 5.2 Let F:Q2—X" be a cp-Bessel mapping
for X and G:22—X"" be a cq-Bessel mapping for X.
Then the following assertions are equivalent:

(i) For each x X, szngG(Kp)‘lT;Axx.
(ii) For each g X, g=T _(K%) *To(4) 0.
(iii) For each xeX and
0= [ %F(0))0,6(w))de )

Q0
(iv) For each Schauder basis {ei,eT} of X,

*

geX

Error!

Definition 5.3. Let F:2—»X be a cp-Bessel
mapping for X and G:Q2—X" be a cg-Bessel
mapping for X". We say that (F,G) is a c-dual pair,
if one of the assertions of Theorem 5.25, satisfies.
In this case F is called a cp-dual of G and by
Theorem 5.2, we can say that G is a cg-dual of F.

Definition 5.4. Let F:2—X" be a cp-frame for X.
We say that F is independent, provident that for
each measurable function ¢:02—C and x X,

J %F (@)K @)d () =0,
0

implies that ¢=0.

Theorem 5.5 Let F:Q2—X" be a cp-frame for X and
H(E)>k=>0, for each measurable set E, except E=&.
Then, we have the following assertions:

(1) If F is an independent cp-frame for X, then there
exists a unique cg-frame, G:Q2—X" for X', such
that (F,G) is a c-dual pair.

(i) If Ker(T)) and (Ker(T_))" are topologically

complementary in L%, , then there exists a cg-
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Lraair:le G:0Q->X  for X', such that (F,G) is a c-dual 1A+ ﬁ) 1+/11+§

| Al—5; 1 and B[———1,
E. 6 PERTURBATION OF CP-FRAMES 1+/12 1—/12
Perturbation of discrete frames has been discussed where A and B are the frame bounds of F.

in [2]. The proof of the following theorem is based
on the following lemma, which was proved in [2].

Lemma 6.1. Let U be a linear operator on a
Banach space X and assume that there exist
A,4,€[0,1) such that for each x X,
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