
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 41 (AVALON) (March 2016), PP. 5-9

5 | P a g e

A COMPARATIVE STUDY OF TEXTUAL

PROGRAMMING V/S

PROGRAMMING WITH VIRTUAL

INSTRUMENTS
Akash Tomar1, Prerita Deshpande2, Pallavi Nimbalkar3, Tanvi Gurav4, U. B. Mantale5

Computer Engineering Department, Mumbai University

Navi Mumbai, India
1akashtomar@yahoo.com

2deshpandeprerita@ymail.com
3pallavinimbalkar05@gmail.com

4guravtanvi@yahoo.in
5u.b.manthale@gmail.com

Abstract— In a world where digitalization of day to day

activities is increasing rapidly, the strain is on professional

developers to fulfil the growing demands. The need for more

human centred user interfaces is also rising. Not only should the

device perform accurately, it should be self-explanatory to the

users. A user friendly, innovative and resourceful Graphical User

Interface is required to make a device or software efficient to

use. This paper explores the positive and negative outcomes of

textual programming and programming using virtual

instruments .

Index terms- Virtual Instrumentation, Textual Programming,

LabVIEW, Evolution of Programming, User Interface.

I. INTRODUCTION

For more than 50 years, engineers have sought easier and

faster ways to solve problems through computer programming.

Furthermore, the programming languages chosen by engineers

to translate their task have trended towards higher level of

abstraction. This paper explores the concepts of programming

with virtual tools in addition to G programming.

When software is to be created, often, the first preference of

developers is a textual programming language to write the

code in. Since students as well as professional developers are

well acquainted with languages such as C, C++, Java, their

approach is restricted and more inclined towards these textual

languages. At an academic level, programmers are less

exposed to different programming methods, thus limiting their

use to a particular textual programming language.

However at an industrial level, where a project completion

deadline is as important as the actual of the project itself,

professional developers experiment with various methods to

reduce time and development cost. This has lead to the

development and evolution of programming with virtual tools,

also called as virtual instrumentation.

The comfort level of a developer many vary from different

perspectives such as the exposure to various programming

methodologies, their proficiency in these languages and the

confidence to implement it.

The purpose of this paper is to investigate the pros and cons

of programming paradigms that are used for implementation

in programming with virtual instruments and textual

programming. Based on the analysis, this paper will be

capable to decide which programming approach has potential

in minimizing the development cost and other parameters.

II. EVOLUTION OF TEXTUAL PROGRAMMING

At the dawn of modern computer age in the mid- 1950s, a

small team at IBM decided to create a more practical

alternative to programming the enormous IBM 704 mainframe

(a supercomputer in its day) in low level assembly language

the most modern language at the time. The result was

FORTRAN a more human readable programming language.

FORTRAN, i.e. Formula Translation was intended for high

level scientific, mathematical computations. BASIC was

developed specifically for timesharing. It was a very stripped-

down version of FORTRAN, to make it easier to program. The

language C is still the most successful language and many

other languages such as C++, Perl and Python are based on C.

All of the features of Pascal, including the new ones such as

the CASE statement are available in C. C uses pointers

extensively and was built to be fast and powerful at the

expense of being hard to read.

In the late 1970’s and early 1980’s, a new programing method

was being developed. It was known as Object Oriented

Programming, or OOP. Objects are pieces of data that can be

packaged and manipulated by the programmer. Bjarne

Stroustroup liked this method and developed extensions

to C known as “C with Classes.” This set of extensions

developed into the full-featured language C++, which was

released in 1983. C++ was designed to organize the raw power

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 41 (AVALON) (March 2016), PP. 5-9

6 | P a g e

of C using OOP, but maintain the speed of C and be able to run

on many different types of computers. C++ is most often used

in simulations, such as games.

After C++, Sun Microsystems developed java language. It

provides platform independence. We can use the same code

on Windows, Solaris, Linux, Macintosh, and so on. Compared

with Java, C++ builds are slow and complicated. These

languages are purely program based textual languages.

In the times when programming languages were just formed,

the focus was on executing the program successfully and

getting an accurate output. This, in itself was a difficult task.

Thus, GUI and aesthetics were neglected. Many challenges

were faced while using textual languages; these are explained

in the next section.

III. CHALLENGES FACED IN TEXTUAL

PROGRAMMING

One major challenge faced during textual programming is the

time consumption. Here, the code is made from scratch and is

done manually. All of the libraries have to be referenced

manually and the logic must be worked out. Even after the

program has be written, it has to be tested for errors, debugged

and executed. Error debugging is another challenge faced by

the developers. In this type of programming, the developer

must study the entire code in detail so as to find the bug and

the resolve it. If the code is long and complex, it may be

frustrating for the developer to resolve errors.

The user interface has to be designed in a way that can be

easily comprehended by the user; it has to be consistent and

well organized. The aesthetics of the software play an

important part in its usage. Though this is not impossible in

textual programming, it leads to complicated coding that can

be done by professionals and experts.

The software must also be self-explanatory in terms of logic

and GUI. In case the user wishes to modify the software, it

must be an achievable task. Again, depending on the

complexity of the program, this task can be done by

professionals alone. The time taken by an individual to study

that particular programming language enough to modify the

program, increases overall time consumption.

On an industrial level, scientists may not be well-equipped

with programming knowledge, but still need to create user

interfaces to control hardware operations. This generates an

issue wherein professional programmers have to be roped in

to do the work.

IV. PROGRAMMING WITH VIRTUAL TOOLS

This module can be classified as programming with visual

tools and graphical programming. Here, we use various

available tools to create and modify softwares as per user

requirements.

A. Programming with visual tools:

Several Integrated Development Environments are available

that offer visual tools for designing a software. One such

example is Microsoft Visual Studio. It provides an integrated

platform for creating web applications, web forms, databases

etc. Visual Studio is well equipped with a toolbox that offers

the developer readymade tools to design the software. This

toolbox consists of tools like buttons, input textboxes, labels,

dialog boxes, timers etc. One can also connect the application

to database schemas.

Programming in Visual Studio is a form of visual programming

[3], i.e. textual programming along with visual tools to design

the GUI. However, Intellisense, another feature of visual

studio, makes textual programming easier by automatically

generating lists of keywords and functions from the inbuilt

library to predict what the developer wants to write. This

makes it handy for the developers as they do not have to

remember the keywords or syntax, also reducing syntactical

errors in process.

B. Graphical programming

Graphical programming is purely virtual programming as it

involves generating a program using only virtual tools. These

tools may be in the form of knobs, buttons, etc. This form of

programming is mainly used to create softwares that in turn

control hardware machines. A virtual instrument consists of an

industry-standard computer or workstation equipped with

powerful application software, cost-effective hardware such as

plug-in boards, and driver software, which together perform

the functions of traditional instruments. Traditional

instruments come with limitations in form of actual knobs with

pre-specified value range, buttons with specific commands etc.

This limits flexibility in implementing operations where values

are fluctuating. Also, these instruments cannot be modified,

but have to be created again.

Using virtual instruments, one can create GUIs that depict the

traditional instruments but can change the value ranges as per

requirements. This proves beneficial for the developer as well

as the user.

V. INTRODUCTION TO VIRTUAL

INSTRUMENTATION

The rapid adoption of computerized applications in the last 20

years catalysed a revolution in the fields of instrumentation

and automation. The concept of virtual instrumentation offers

several benefits to engineers and scientists who require

increased productivity, accuracy, and performance.

Virtual instruments represent a fundamental shift from

traditional hardware-centred instrumentation systems to

software-centred systems that exploit the computing power,

productivity, display, and connectivity capabilities of popular

desktop computers and workstations. It can be said that using

virtual instrumentation, the traditional hardware applications

can be digitalized, thus making software applications that

control the hardware machines.

VI. EVOLUTION OF VIRTUAL INSTRUMENTATION

Historically, instrumentation systems originated in the distant

past, with measuring rods, thermometers, and scales. In

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 41 (AVALON) (March 2016), PP. 5-9

7 | P a g e

modern times, instrumentation systems have generally

consisted of individual instruments. Even complex systems

such as chemical process control applications typically

employed, until the 1980s, sets of individual physical

instruments wired to a central control panel that comprised an

array of physical data display devices such as dials and

counters, together with sets of switches, knobs and buttons for

controlling the instruments. The introduction of computers

into the field of instrumentation began as a way to couple an

individual instrument, such as a pressure sensor, to a computer,

and enable the display of measurement data on a virtual

instrument panel, displayed in software on the computer. and

enable the display of measurement data on a virtual instrument

panel, displayed in software on the computer monitor and

containing buttons or other means for controlling the operation

of the sensor. Thus, such instrumentation software enabled the

creation of a simulated physical instrument, having the

capability to control physical sensing components.

VII. ARCHITECTURE OF VIRTUAL INSTRUMENT

A virtual instrument is composed of following blocks:

• Sensor Module

• Sensor Interface

• Information Systems Interface

• Processing Module

• Database Interface

• User Interface

Fig.1.1 shows the general architecture of a virtual instrument.

The sensor module detects a physical signal and transforms it

into a digital form. Through a sensor interface, the sensor

module communicates with a computer. Once the data are in a

digital form on a computer, they can be manipulated or stored.

Then the data is displayed or converted back to analog form.

VIII. G PROGRAMMING CASE STUDY: LABVIEW

LabVIEW[1] (Laboratory Virtual Instrument Engineering

Workbench) is a programming environment that features a

dataflow-based VPL (called G) which was designed to

facilitate development of data acquisition, analysis, display and

control applications. Moreover, one of LabVIEW's marketing

claims is that LabVIEW is so usable that it is an effective tool

not only for trained programmers, but also for certain types of

end users. In particular, LabVIEW is described as usable by

scientists and engineers who possess limited programming

experience, yet who need software to interact with laboratory

equipment.

You can customize front panels with knobs, buttons, dials, and

graphs to emulate control panels of traditional instruments,

create custom test panels, or visually represent the control and

operation of processes. The similarity between standard flow

charts and graphical programs shortens the learning curve

associated with traditional, text-based languages.

Fig 1.2 shows the front panel of LabVIEW that displays the

user interface component. Several knobs, buttons, graphs, level

adjusting switches etc. can be seen in this panel. Fig 1.3. shows

the Block panel of the front panel. Here the entire working of

the application is revealed. Loops, variables, stop switches are

all presented in form of blocks.

Fig 1.2: Front Panel of LabVIEW

Fig 1.3: Block Panel of LabVIEW

CHALLENGES IN GRAPHICAL PROGRAMMING

Though this is a more advanced and convenient technique of

programming, it has limited options when it comes to virtual

tools. A common developer has to create programs using only

the tools available in the virtual toolbox. It may be possible for

an expert to create his own tools.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 41 (AVALON) (March 2016), PP. 5-9

8 | P a g e

Moreover, looking isn’t always seeing. Different individuals

have different perspectives. A person not familiar with the

software may interpret the symbols incorrectly. Conventions

have to be followed in graphical programming and specific

tools have specific representations. They must be used for that

particular task [4].

Also, as compared to textual programming where the code

goes on in a flow, graphical programming has many scattered

components not necessarily organized properly. Thereby, it

may prove problematic for someone other than the developer to

get the gist of the program.

The comfort level of the developer also decides the

difficulty in graphical programming. A professional from a

computer field may be more comfortable writing long codes in

textual languages, instead of using graphical tools.

IX. COMPARISON BETWEEN TEXTUAL

PROGRAMMING AND PROGRAMMING WITH

VIRTUAL TOOLS

1) Integrated Development Environment

The major thing with programming with virtual tools is that it

requires an IDE (Integrated Development Environment). The

entire implementation of the program revolves around this

IDE. On the other hand, textual programming is independent of

such development environment.

2) Time

The use of virtual tools minimizes amount of time since

majority of work is handled by the IDE even we are not sure

about the syntax of the language. In case of textual

programming due to the absence of IDE, the developer is

bound to have some skill of the language syntax master in

language syntax in order to speed-up

the development process

.

3) Debugging

During debugging, a virtual tool points out errors and puts

forth alternative functions or properties to resolve them unlike

a non-virtual tool language.

4) Interfacing tools

A virtual tool provides an ease to develop a

program just by introducing features such as drag and

drop, adding menu lists, dialogue boxes, drawing

elements graphically, etc. In case of a textual

programming there is no way out than to write down the

entire code manually which is a much tedious task.[3]

5) Modifications

A lay man/beginner can easily modify the

interface with the help of virtual tool paradigms,

whereas, modifying a language without a virtual tool

becomes a complex job.

6) Speed

G represents an extremely high-level programming language

whose purpose is to increase the productivity of its users while

executing at nearly the same speeds as lower-level languages

like FORTRAN, C, and C++.

XI. EXAMPLES OF TEXTUAL PROGRAMMING V/S

PROGRAMMING WITH TOOLS

1) Example of C v/s LabVIEW

For Loop in LabVIEW

A For Loop executes a sub diagram a set number of times.

Fig.1.4. below shows an empty For Loop in LabVIEW. A For

loop executes its sub diagram n times, where n is the value

wired to the count () terminal. The iteration () terminal

provides the current loop iteration count, which ranges from 0

to n-1.

Fig. 1.4.: For Loop in LabVIEW

For loop in C: Fig. 1.5. shows a flowchart depicting a For

Loop in C language.

• The init step is executed first, and only once.

• Next, the condition is evaluated. If it is true, the body

of the loop is executed. If it is false, the body of the loop

does not execute and the flow of control jumps to the next

statement just after the 'for' loop.

• After the body of the 'for' loop executes, the flow of

control jumps back up to the increment statement.

The condition is now evaluated again. If it is true, the loop

executes and the process repeats itself (body of loop, then

increment step, and then again condition). After the condition

becomes false, the 'for' loop terminates.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Special Issue 41 (AVALON) (March 2016), PP. 5-9

9 | P a g e

Fig. 1.5.: For Loop in C

2) Example of HTML v/s Visual Basic

Creating a command button in HTML:

<!DOCTYPE html>

<html>

<body>

<button type = “button” onclick= “alert(‘Hello

world!’)”>Submit</button>

</body>

</html>

Creating a button in VB:

• Open your form. Figure out where you want

the button to appear.

• Select the command button tool on the

toolbox to your right.

• Draw the button on the form to the size that

you want.

• Change button name and functions in

properties.

Fig. 1.6.: Creating command button in VB

X. CONCLUSION

There has been much research in the area of visual

programming tools, because humans think and remember

things in terms of pictures. Imagery is an integral part of

creative thought. Humans can absorb data much easier

from well-defined plots than they can from large codes.

Proponents of visual programming therefore argue that the

development of visual tools is a natural step in the

evolution of programming.

Textual programming languages have been considered as a

universal standard for programming. While they can be

used for writing arbitrary programs and provide some high

level constructs, they are not very practical to use and

often fail to simplify basic programming tasks with respect

to their text based counterparts.

This paper presented the pros and cons of textual as well as

graphical programming. We can conclude that virtual

tools, well suited for manipulating high level abstractions

should provide a lot of support for frequent tasks, and

promote ease of navigation and consistency. Thus it can be

said that despite the popularity and extensive use of textual

programming languages, programming using virtual tools

and instruments is emerging as a fresh alternative.

This being said, a third convention may emerge soon

where a choice of textual or graphical programming could

be provided in the same IDE, allowing developers to

choose the option they feel suitable. Furthermore, this

evolved IDE may also arrange for an alternative for

converting textual code to graphics and vice versa.

REFERENCES

[1] http://www.ni.com/labview/

[2] Towards Virtual Laboratories: a Survey of LabVIEW-

based Teaching/ Learning Tools and Future Trends*

[3]

https://channel9.msdn.com/Forums/Coffeehouse/Visual-

programming-language-vs-text-based-programming-

language

[4] Visual Programming: The Outlook from Academia and

Industry- K. N. Whitley and Alan F. Blackwell.

