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Abstract- An investigation is made to carry out to study the 

thermal-diffusion and diffusion thermo-effects in hydro-magnetic 

transient flow by a mixed convection boundary layer past an 

impermeable vertical stretching sheet embedded in a conducting 

fluid-saturated porous medium in the presence of a chemical 

reaction effect. The velocity of stretching surface, the surface 

temperature and the concentration are directly proportional to 

the distance along the surface. The flow is impulsively set into 

motion rest, and both the temperature and concentration at the 

surface are also suddenly changed from that of the ambient fluid. 

An external magnetic field of strength is applied perpendicular to 

the stretching sheet. Introducing non- dimensional parameters, 

the governing set of partial differential equation are transformed 

into the self-similar unsteady boundary layer equations. These 

equations are solved by Runge-kutta integration scheme with 

shooting method for the whole transient flow from initial 

state( 0  ) to final steady state flow ( 1  ). Numerical results 

for the velocity, temperature, and Concentration profiles are 

presented graphically for different existing flow parameter. A 

special case of our results is in good agreement with an earlier 

published work. 

Key words:  Heat and mass transfer, boundary layer flow, 

porous media, magnetic field Soret number and Dufour’s 

number.  

 

I. INTRODUCTION 

During recent years of studies, the effect of magnetic field 

on the flow of viscous fluid with heat and mass transfer 

through a uniform porous media has become the subject of 

great interest due to wide application in the fast growing field 

of science and technology. Numerous publications has been 

appeared in the leading journal in developed country. It 

appears that knowledge of the effect of an applied magnetic 

field on flow, mass and heat transfer is useful for cooling 

processes in the presence of an electrolytic bath. In some 

metallurgical processes, such as drawing, annealing and those 

that involve the cooling of continuous strips of filament by 

drawing tinning of copper wires etc, the properties in 

quiescent fluid of the final product depend to a great extent on 

the rate of cooling. The rate of cooling can be controlled by 

drawing such strips in an electrically conducting fluid subject 

to a magnetic field, and the final product of desired 

characteristic can be achieved. 

The recent studies of physics of fluid flow through porous 

media has become basic for science and technology and of 

great interest in present days due to their engineering 

application. One may refer the branches of application as 

aquifer systems in studies of ground water hydrology, 

chemical engineering soil mechanics, water purification, 

industrial filtration etc. 

The coupled heat and mass transfer phenomenon in 

porous media has drawn the attention of galaxy 

scholars/authors due to it interesting and tremendous 

application. The processes involving heat and mass transfer in 

porous media are often encountered in the chemical industry, 

in reservoir engineering in connection with thermal recovery 

processes, and in the study of dynamics of hot and salty spring 

of sea, underground spreading of chemical waste and other 

pollutants, gain storage, evaporation cooling, and 

solidification are a few other application area where combined 

thermosolutal convection in porous media is observed. The 

exhaustive volume of work devoted to this area by the most 

recent books by Nield and Bejan(1999), Vafai(2000). 

Furthermore, the presence of a foreign mass in air or water 

causes some kind of chemical reaction. During a chemical 

reaction between two spices, heat is also generated. Duffusion 

and chemical in an isothermal laminar flow along a soluble 

flat plate was discussed by Fairbanks and wike(1950). Das 

et.al. (1994) discussed the effects of mass transfer on the flow 

past an impulsively started infinite vertical plate with constant 

heat flux and chemical reaction. The flow of mass diffusion of 

a chemical spices with first order and {(Pop and Ingham 

(2001) and Ingham and Pop (1998-2002)} higher order 

reactions over a linearly stretching surface was investigated by 

Andersson et.al.(1994). The mixed convective heat and mass 

transfer over a horizontal moving plate with a chemical 

reaction effect was studied by Fan et.al.(1998). Anjalidevi and 

Kandasamy (1999) studied the steady laminar flow along a 

semi-infinite horizontal plate in the presence of a spices 

concentration and chemical reaction. The flow and mass 

diffusion of a chemical spices with first order and higher order 
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reactions over a continuously stretching sheet with an applied 

magnetic field was studied by Tahkar et.al.(2000). 

Muthucumaraswamy (2002) investigated the effects of a 

chemical reaction on a moving isothermal vertical infinitely 

long surface with suction. Chamkha et.al.(2004) studied the 

double-diffusive convective flow of a micro-polar fluid over a 

vertical plate embedded in a porous medium with a chemical 

reaction. The combined effects of the free convective heat and 

mass transfer on the unsteady boundary layer flow over a 

stretching surface in the presence of a species concentration 

and chemical reaction was investigated by Aboeldahab and 

Azam(2006). Postelnicu (2007) analysed numerically the heat 

and mass transfer characteristics of natural convection about a 

vertical surface embedded in a saturated porous medium 

subjected to a chemical reaction. Rashad and El-kabeir(2010) 

recently investigated the heat and mass transfer in transient 

flow by mixed convection boundary layer over a stretching 

sheet embedded in a porous medium with chemically reactive 

spices. Sallam.N(2010) analysed the thermal-diffusion and 

diffusion-Thermo effects on mixed convection heat and 

transfer in a porous medium. 

The purpose of the present paper is to study the 

simultaneous heat and mass transfer by an unsteady mixed 

convection boundary layer past an impermeable vertical 

stretching sheet embedded in a conducting fluid saturated 

porous medium with chemically reactive species in the 

presence of magnetic field. 

 

II. FORMULATION OF THE PROBLEM 

We consider a unsteady two-dimensional laminar heat 

and mass transfer by a mixed convection boundary layer flow 

of viscous, incompressible, Newtonian conducting fluid past 

an impermeable vertical plate stretching in the direction with a 

positive velocity  eU x ax of a saturated porous medium 

in the presence of a magnetic field of uniform 

strength 0B which is perpendicular to the direction of flow. 

The chemical reaction is taking place in the flow over the 

porous medium with effective mass diffusivity eD and the rate 

of chemical reaction 1K throughout the fluid. The magnetic 

Reynolds number of the flow is taken to be small enough so 

that the induced magnetic field can be neglected. In addition, 

Joule heating is neglected but Soret and Dufour’s effects are 

examined. 

For the mathematical modeling, we take Cartesian 

coordinates (x, y) as shown in fig.1, where the positive x-axis 

is extended along the sheet in the upward direction while the 

y-axis is normal to the surface of the sheet and is positive in 

the direction from the sheet to the fluid. The stationary co-

ordinate system has its origin located in the center of the sheet. 

The sheet is maintained a temperature ( )wT x T bx  and 

concentration ( ) ,wC x C bx  and the ambient medium 

temperature and concentration far away from the surface of 

the sheetT and C are assumed to be uniform. For 

wT T and ( ) ,wC x C ax  an upward (assisting)flow is 

induced as a result of the thermal  and concentration buoyancy 

effects. Initially (t<0), the ambient fluid –saturated porous 

medium is quiescent and has temperature T and 

concentration C respectively. At t=>0, the fluid is 

impulsively started in motion with the velocity  ( ),U x  and 

both the temperature and the concentration at the sheet 

suddenly changed to constant values wT T  

and ( ) ,wC x C ax   respectively. The fluid is assumed to 

have constant properties, except for the influence of the 

density and chemical reaction variations with temperature and 

concentration which are considered in the body force term. 

Under the preceding assumption, the physical variables are 

functions of y and t only and the governing boundary layer 

equations of mass, momentum, energy and diffusion under 

Boussinesq approximation could be written as follows 
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The initial and boundary conditions of equations (1)-(4) are  
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Where u and v  are the velocity components along the x -axis 

and y -axis  respectively;T and C are the temperature and 

concentration of the  conducting fluid,  is the electrical 

conductivity, 0B  is the intensity of the uniform magnetic 

field,   is the density,   is the kinematic viscosity,  is the 

thermal diffusivity, T is the thermal expansion co-

efficient, C  is the concentration expansion co-efficient, K  is 

the permeability of the porous  medium, 1K  is the dimensional 

chemical reaction parameter and , ( 0)a b  are constant. 

Introducing the flowing change of variables as Rasad and El 

Kabeir(2010) and Ishak et.al.(2006) 

1 1
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Where     is the stream function which is defined as  

u
y





  and   .v
x
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
                                                                                                                                  (7) 

The equation of continuity (1) is identically satisfied which can be easily verified. It is convenient for one to select the time scale 

  so that the region of time integration  0    occur 0 1  . Using (6) and (7) , the equation (2), (3) and (4) converts to 
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Where prime denotes differentiations with respect to   only, 

and the suffix   denotes the partial derivatives with respect to 

 ,   is the mixed convection parameter, N is the ratio of 

buoyancy force due to mass diffusion to the buoyancy force 

due to thermal diffusion,  aD is the Darcy number, M  is the 

hydro-magnetic parameter which is the ratio of Lorentz force 

to the viscous force, rP is the Prandtl number, fD is the 

Dufour’s number, cS is the Schmidt number for porous 

medium, 
 
is the dimensionless parameter of chemical  and 

rS  is the  Soret number which are defined, respectively as   
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Where eD is the effective mass diffusivity , mT  is the mean 

fluid density, C  is the concentration expansion co-efficient, 

T  is the thermal expansion co-efficient,  TK is the thermal 

diffusion ratio, D  is the fluid mass diffusivity ,  xGr is the 

local grashof number, Rex is the local Reynolds number.  

It is observed that when  is positive, i.e. 0,   it 

corresponds to the (aiding flow) assisting flow case.  When   

is negative i.e.  0,   then it corresponds to the opposing 

flow case. The boundary condition 5(a) and 5(b) in view of  

(6) are reduced to  
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It is noted that the equation (8)-(11) for 

0, 0, 0f rM D S   reduce to those of Rashad and El-Kabeir 

(2010). Furthermore, for 0, 0, 0, 0, 0, 0f r aM D S D N        

reduce to those of Ishak et.al, (2006) 

 

III. NUMERICAL SOLUTION 

The equation (8)-(10) together with boundary condition(12) 

are the parabolic partial differential equations. Instead of 

solving these partial differential equation directly, we look for 

the particular case of the problem which are the system of 
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ordinary differential equations with a set of constraints at the 

boundary and can be easily solved by the shooting method. 

The solution procedure for the entire time domain 0 1    

is explained in the following part. 

A. Unsteady solution at initial stage (state) when  

0   

When time scale 0  , i.e. for initial unsteady flow, it 

corresponds to 0,  , the equation (7)-(9) converts to  
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3.2. Solution for steady state when  1  , i.e. final steady flow. 

When  1  , corresponding to    , equations(8)-(10) becomes  
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3.3.  Solution for small   ( or  ) 

The approximate solutions of equation (8)-(10) subject to the boundary condition (12), which are valid for the region 1,   

equivalent to the small time  1   solution, can be expressed as 
2
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IV. NUMERICAL SOLUTION 

The numerical solution to the boundary value problem of 

ordinary differential equations is obtained by the Runge kutta 

method in association with the shooting technique. It may be 

noted that the source of error in the simulation may come from 

the prescribed boundary conditions at the infinity. The reason 

is that the physical domain under consideration is unbounded 

whereas the computational domain is finite. In fact, the far 

field boundary condition usually depends on the physical 

parameters of the problem, and its value needs to be adjusted 

as the value of the parameters change. In practice, the 

computational domain is chosen to be sufficiently large, so 

that the numerical solution closely approximates the terminal 

boundary conditions at infinity. Here boundary condition at 

the far end has been fixsed to 10 and is suitably less than 10 

depending on the choice of the parameters. 

 

V. RESULTS AND DISCUSSION 

A representative graphical results of velocity profiles, 

temperature profiles and concentration profiles are presented 

in Figs. 2—13 for various existing flow parameters across the 

boundary layer of the conducting fluid. These Figs1-3. 

Demonstrate the advancement of Velocity, temperature and 

concentrtaion profiles from initial to final steady state when 

0, 0,f rD S 

0.7, 0.22, 2, 1, 2, 1, 0r c aP S D N M       

.  From figs 2 & 3, it is clear that the variations of velocities 

and temperature are observed to be rise more from initial state 

( 0  )to final steady state ( 1  )  respectively where as 

the results presented in the fig.4 for the  concentration of the 

fluid, are observed to be decline from initial state ( 0  ) to 

final steady state ( 1  ). The variation of velocity profiles 

f  vs   for various magnetic parameter M for fixed 

0.5, 0.5, 0.7, 0.22, 5,f r r c aD S P S D    

1,N  8, 1    are shown in Fig.5.The effects of 

magnetic field are seen to decrease the velocity f  across the 

boundary layer of the conducting fluid as the Lorentz force 

retards the motion of the conducting fluid throughout  the 

boundary layer. The variation of temperature profiles  vs   

for various magnetic parameter M  for fixed 

0.5, 0.5, 0.7, 0.22, 5,f r r c aD S P S D    

1,N  8, 1    are shown in Fig.6. The effects of 

magnetic field are seen to increase the temperature  across 

the boundary layer of the conducting fluid. The concentration 

profiles  vs   for various magnetic parameter M  for fixed 

0.5, 0.5, 0.7, 0.22, 5,f r r c aD S P S D    

1,N  8, 1,    are plotted in Fig.7. The effects of 

magnetic field are seen to decrease the concentration 
 
across 

the boundary layer of the conducting fluid as the Lorentz force 

retards the motion of the conducting fluid across the boundary 
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layer. Variations of velocity  profiles f   vs   and 

temperature profile  vs  for various Dafour number 
fD  for 

fixed parameter 0.5, 0.7,r rS P  0.22,cS   

5, 1, 10,aD N    1, 1M   , are plotted in Figs.8 

and Fig.9 respectively. The effects of Dafour number are seen 

to increase the velocity and temperature of the conducting 

fluid across the boundary layer. The variations of 

Concentration profiles  vs  for various Dafour number 
fD  

for fixed parameter 0.5, 0.7,r rS P  0.22,cS   

5, 1, 10,aD N    1, 1M   , are plotted in 

Figs.10. The concentration are seen to increase with the 

increase of Dafour number
fD . Variations of velocity  

profiles ,f  temperature profile  and Concentration profiles 

,  vs  for various Soret number rS for fixed parameter 

0.5, 0.7, 0.22,f r cD P S  

5, 1, 8, 1, 1aD N M      are plotted in Figs.11, 

12 & 13 respectively. It is observed form Fig.11 that the 

velocity distributions ,f  increases with the increases of Soret 

number rS  across the boundary layer of the conducting fluid. 

Fig.12 shows that the temperature distributions   increases 

with the increases of Soret number rS  across the boundary 

layer of the conducting fluid. The effects of Soret number 

rS are seen to increase the Concentration profile  across the 

boundary layer which are shown in Fig.13. 

 
Fig.1 Sketch of flow geometry 

 
Fig.2 Variations of velocity profiles f  from initial ( 0  ) 

to final steady state ( 1  ) 

When 0, 0, 0.7, 0.22, 2, 1, 2, 1, 0f r r c aD S P S D N M          . 

 

Fig.3 Variations of temperature profiles from initial 

( 0  ) to final steady state ( 1  ) when 

0, 0, 0.7, 0.22, 2, 1, 2, 1, 0f r r c aD S P S D N M         

 
Fig.4 Variations of Concentration profiles   from initial 

( 0  ) to final steady state ( 1  ) when 

0, 0, 0.7, 0.22, 2, 1, 2, 1, 0f r r c aD S P S D N M         
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Fig.5 Variations of velocities profiles f  from initial 

( 0  ) to final steady state ( 1  ) for various magnetic 

parameter M when 0.5, 0.5, 0.7, 0.22,f r r cD S P S     

5, 1, 8, 1,aD N       

 
Fig.6  Variations of temperature profiles   from initial 

( 0  )to final steady state ( 1  ) for various  magnetic 

parameter M when 0.5, 0.5, 0.7, 0.22,f r r cD S P S     

5, 1, 8, 1,aD N       

 
Fig.7  Variations of Concentration profiles   from initial 

( 0  )to final steady state ( 1  ) for various  magnetic 

parameter  M when 

0.5, 0.5, 0.7, 0.22,f r r cD S P S    5, 1, 8, 1,aD N       

 

 
Fig.8  Variations of  velocities profiles f   from initial 

( 0  )to final steady state ( 1  ) for various  Dafour 

number 
fD  for fixed parameter 0.5, 0.7, 0.22,r r cS P S    

5, 1, 10, 1, 1aD N M      . 

 
Fig.9  Variations of temperature profiles   from initial 

( 0  ) to final steady state ( 1  ) for various Dafour 

number 
fD  for fixed parameter     

0.5, 0.7, 0.22,r r cS P S    5, 1, 10, 1, 1aD N M      . 

 
Fig.10  Variations of Concentration profiles    from initial 

( 0  )to final steady state ( 1  ) for various  Dafour 

number fD  for fixed parameter     

0.5, 0.7, 0.22,r r cS P S    5, 1, 10, 1, 1aD N M      . 
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Fig.11   Variations of  velocities profiles f    from initial 

( 0  )to final steady state ( 1  ) for various  Soret 

number rS  for fixed parameter     

0.5, 0.7, 0.22,f r cD P S    5, 1, 8, 1, 1aD N M      . 

 
Fig.12  Variations of temperature profiles   from initial 

( 0  )to final steady state ( 1  ) for various Soret 

number rS  for fixed parameter     

0.5, 0.7, 0.22,f r cD P S    5, 1, 8, 1, 1aD N M      . 

 
Fig.13  Variations of Concentration profiles    from initial 

( 0  )to final steady state ( 1  ) for various  Soret 

number rS  for fixed parameter 0.5, 0.7, 0.22,f r cD P S    

5, 1, 8, 1, 1aD N M      . 
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