
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 76-81

76 | P a g e

SYMMETRIC KEY ENCRYPTION USING A

SIMPLE PSEUDO-RANDOM GENERATOR TO

PROVIDE MORE SECURE COMMUNICATION

Brijgopal Bharadwaj1, Shreyas Shukla2, L. Shalini3,

Department Of Computer Science Engineering
1,2Student, B. Tech., VIT, Vellore

 3Assistant Professor (Senior), VIT, Vellore

Abstract— Symmetric key encryption is a cryptographic

algorithm in which same keys are used for both, encryption and

decryption of the information. Sometimes it is also referred to as

the secret key cryptosystem and is the fastest mode of encryption.

But, the usage of the same key for conversion and extraction of

the data from the ciphertext is a major drawback of this

algorithm, as this makes it vulnerable to a number of possible

attacks, like the known-plaintext attacks and brute-force

analysis. To enhance the security of this method, we are

proposing a stream cipher that changes the key for every

message or bit of information that is shared between the two

parties involved in the communication. This ensures that a

different ciphertext is produced even for the same message, every

time it is encrypted, thus making the procedure immune to these

possibilities.

To achieve this, in our work, we have proposed a method of

producing pseudo-random numbers generated from a seed value

known beforehand to both the users. Using this pseudo-random

generator, we can change the key every-time a message is shared

between the sender and the receiver. The generator also depends

upon the index of the message being communicated, making it

even more difficult to break the cipher, if the knowledge about

the sequence of the communication is unknown.

Index Terms— Symmetric Encryption, Pseudo-Random

Generator, Stream Cipher, Forward Secrecy.

I. INTRODUCTION

The human beings are often referred to by the experts as

‘social animals’. One of the key reasons for this is our need to

communicate with each other. But, often there comes a need to

establish a localized communication with certain people around

us, without the explicit disclosure of the thoughts being shared.

This need was perceived quite early by our ancestors. And so,

the contemporary brighter minds came up with some

extraordinarily innovative methods to cater this need. These

methods or algorithms gave birth to the art of selective

communication that we know today as ‘Cryptography’.

The basic need of any modern cryptographic algorithm is to

obtain or generate a sufficiently random parameter which

cannot be easily determined without the knowledge related to a

certain private piece of information. The randomness of this

parameter can be used to increase the computational

complexity of breaking the cipher to a great extent. This is a

vital and an integral part of any modern-day communication

system or protocol, for the sake of increased security of the

interaction between the two parties involved in

communication. The need becomes even more apparent when

the growth in the computational power available to the

eavesdropper is considered. More is the degree of randomness

of this parameter, harder it is for the attacker to generate the

plaintext from the given ciphertext via a Brute-Force attack on

the cipher.

The traditional or the conventional symmetric key

encryption is one of the fastest modes of encryption, that can

be deployed with a great computational ease and thus hold an

upper hand in implementation, with respect to its other

counterparts. But, symmetric encryption encounters certain

fundamental drawbacks due to its design paradigms. To

implement it efficiently in real time problems it is very

important to address these drawbacks in the manner deemed

necessary.

In this paper we have proposed a symmetric key

cryptosystem that is designed to address and rectify a number

of drawbacks of the traditional methods, in order to provide

complete forward secrecy and confidentiality to the two parties

involved in the communication. It should be noted that our

algorithm does not provide any means to check the data

integrity, implement authentication and ensure non-

repudiation. Here, we also assume that the two parties are in a

mutual agreement over a numerical parameter,that is used to

generate different keys on both ends, for the sake of enhanced

security.

II. ALGORITHM

In our algorithm, we have assumed that both the

communicating members have the knowledge of a common

shared secret number, referred to here as the ‘seed’. The

security of the entire following algorithm heavily depends on

the confidentiality of this seed and is assumed to be sufficiently

secure here. This seed may have been agreed upon via physical

exchange of information or via asymmetric key encryption.

Also, for the purpose of demonstration, we have implemented

our algorithm using the XOR cipher to explain its working,

though if it seems relevant, any other symmetric key algorithm

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 76-81

77 | P a g e

may be used instead, with suitable modifications. A significant

number of algorithms were attempted and out of them, the

presented one was chosen. It is neither the quickest nor the

shortest but is believed to be the best bargain between security,

the simplicity of usage, the absence of a specialized table, and

sensible execution. Once this is done we are in the position to

initiate the following algorithm:

At the very beginning, the user will be provided with an

option to choose between encryption of a message and its

transmission or decryption of the message from a received

transmitted file. Here we are importing/exporting the

transmitted data from/in a binary text file which may be shared

via any means even on an insecure channel.

Upon the selection of the option to encrypt, the user will be

asked to enter the message and this message will be stored in

an array. After that, a call to the function ‘generate_key’ will

be made which prepares the key for the given instance of

communication. It does so by making repeated calls to the

function ‘rand_key’, which generates a large pseudo-random

number, using the seed value, and the index of the

communication, ‘com_no’. It also changes the seed value upon

each exit, to maintain the desired randomness of the ‘result’,

the final random number. Then, we divide the digits of ‘result’

into the pairs of two and derive the corresponding ASCII

characters for each pair thus obtained. This process is repeated

as long as the size of the key is smaller than the maximum

length specified by the users in the alias name ‘MAX’. Once

this is done, the message is XOR-ed with the key, in a cyclic

fashion, and this encrypted text thus obtained is exported to the

binary text file named ‘transmission.txt’.

Similarly, if the option of decryption is selected, a similar

call to the function generate_key is made as explained above,

and results in the same key as generated on the transmission

end, provided the indexing of the communication is

maintained. Once the key is obtained, the received encrypted

message is again XOR-ed with the key in a cyclic fashion, to

obtain the original plaintext. This happens so, because of the

unique property of the XOR function:

Corresponding pseudo-code is:

 define Path as "C:/Users/Brijgopal

Bharadwaj/Desktop/transmission.txt"

define as MAX 51

define a datatype of type unsigned long long int named big

declare keylen (to store value of length of key)

declare com_no (to count the number of communication) of

type int

initialize com_no to 0.

Declare a,b and seed of type big and key[MAX] , msg[400]

of type char

void SYMMETRIC()

{

 take the input of seed from the user and store it in the

variable seed

 while(1)

 {

 Print "Enter your choice : 1. Encryption 2. Decryption

3. Exit

 CH=getch();

 If choice is 1 call Encode_main()

 Else if choice is 2 call Decode_main()

 Else display invalid choice.

 }

}

void Encode_main()

{

 Declare i of type int

 Declare ch of type char

 Open the file at path “PATH” in Writing mode.

 Increase the value of com_no by 1.

 Get the message from the user and store it in the array

msg[].

 Call generate_key()

 Display the encoded message

 for(i=0;msg[i] not equal to NULL; i++)

 {

 ch=(msg[i])XOR (key[i%(keylen/sizeof(char))]);

 display ch

 call the function char_to_bin(ch);

 write the bin array in the file

 }

 Close the binary file

}

void Decode_main()

{

 Declare ctr of type int and initialize it to 0.

 Open the file in read mode.

 Declare ch and str[8] of type char.

 Increase the value of com_no by 1.

 Display “Received Message”

 Call the function generate_key();

 while(fgets(str,9,fp) not equal to NULL)

 {

 ch=bin_to_dec(str);

 display ch

 ch=(ch) XOR (key[ctr%(keylen/sizeof(char))])

 msg[ctr]=ch;

 increase the value of ctr by 1

 }

 Display the “Decoded message”

 Close the binary file.

}

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 76-81

78 | P a g e

void generate_key()

{

 Declare i of type int and initialize it to 0

 Initialize a to 0

 while(i is less than MAX-1)

 {

 if(not a)

 {

 b=rand_key(b)

 set a =b

 }

 key[i++]=a%100

 set a = a/100

 }

 key[i++]=NULL

 set keylen equal to i

 for(i=0;i<keylen;i++)

 display key[i]

}

big rand_key(big P)

{

 Declare next and result of type big

 seed equal to seed%1015;

 next equal to(seed) XOR (com_no)

 result equal to P

 next equal to next<<7

 next=next%15;

 result= (result)XOR(next)

 result = result + com_no

 result=result%1015;

 set seed = next;

 return result;

}

III. RESULTS AND DISCUSSION

In the following discussion, we analyze the results obtained

from a basic ‘C' implementation of the algorithm described

above. The XOR cipher used here works on the binary ASCII

values of the characters present in the message or the key. It is

possible here that the generated character, which belongs to the

key or the result, may not be a printable entity due to the nature

of the assigned character. Thus, instead of just printing the

characters of the key or the ciphertext directly, we also provide

their corresponding decimal ASCII value. For the characters

that can’t be printed, we have used standard 3 alphabet codes

for representation.

At the very beginning, the ‘seed’ value was randomly set to

be 2321332. For the first instance of communication, the value

of ‘com_no’ is 1. On the sender’s end, when the function-call

was made for the ‘Encode_main’, the following message was

entered for encryption:

“We are located at (22.5N,65.8E). Come quickly!”

Following this, a call was made to the function

‘generate_key’. It in-turn made repetitive calls to the function

‘rand_key’, each time ‘a’ became zero. Each call returned a

large random number, which was then decomposed into two-

digit numbers. Each of these two-digit numbers were then used

to obtain the corresponding ASCII characters. This was done

until the length of the compiled key was shorter than the

specified length in ‘MAX’. The obtained results were:

Characters EM ACK CR a STX LF b US G M ETX ? HT

ASCII 25 06 13 97 02 10 98 31 71 77 03 63 09

Characters NUL W BEL ETX FS V ! GS F NAK FF T >

ASCII 00 87 07 03 28 86 33 29 70 21 12 84 62

Characters DC1 . & SP FS . ETX 7 CAN S ‘ ‘ STX

ASCII 17 46 38 32 28 46 03 55 24 83 39 39 02

Characters SP R & 6 SP SOH CR ESC ? BS CR NUL

ASCII 32 82 38 54 32 01 13 27 63 08 13 00

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 76-81

79 | P a g e

The obtained key was then used for encryption, by

performing a character-wise xor operation between the key

and the input message in a cyclic fashion, until all the

characters of the message were encoded. the generated

ciphertext was as follows:

Characters N c - NUL p O B s (. b K l

ASCII 78 99 45 00 112 111 66 115 40 46 98 75 108

Characters d w f w < ~ DC3 / h SP B x BS

ASCII 100 119 102 119 60 126 19 47 104 32 66 120 08

Characters $ NUL RS e 5 NUL # t w > B BEL f

ASCII 36 00 30 101 53 00 35 116 119 62 66 07 115

Characters U ; E] L X ,

ASCII 85 59 69 93 76 120 44

This ciphertext was then stored in a file named ‘transmission.txt’, in the binary format. The contents, as stored in the file were:

1001110

1100011

0101101

0000000

1110000

1101111

1000010

1110011

0101000

0101110

1100010

1001011

1101100

1100100

1110111

1100110

1110111

0111100

1111110

0010011

0101111

1101000

0100000

1000010

1111000

0001000

0100100

0000000

0011110

1100101

0110101

0000000

0100011

1110100

1110111

0111110

1000010

0000111

1110011

1010101

0111011

1000101

1011101

1001100

1111000

0101100

This file was then sent to the receiver's end, where its

contents were extracted and were used along with the

obtained key, same as that on the sender's end, for the XOR

operation, in a cyclic fashion. This resulted in a successful

decryption of the message and the following plaintext was

obtained:

“We are located at (22.5N,65.8E). Come quickly!”

When the same message was again encrypted, this time with

the value of the variable ‘com_no’ as ‘2’, the key generated

was:

Characters _ ETB / - % SOH M SP L @] ACK G

ASCII 95 23 47 45 37 01 77 32 76 64 93 06 71

Characters SO EM CR DLE STX EM 6 F CAN 9 ACK ‘ +

ASCII 14 25 13 16 02 25 54 70 24 57 06 39 43

Characters “ F % STX CR SYN SI P FS BEL SP NAK 7

ASCII 34 70 37 02 13 22 15 80 28 07 32 21 55

Characters US STX HT 4 CAN W CR BEL _ 3 CR NUL

ASCII 31 02 09 52 24 87 13 07 95 51 13 00

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 76-81

80 | P a g e

The corresponding ciphertext generated after encryption was:

Characters BS r SI L W D m L # # < r “

ASCII 08 114 15 76 87 100 109 76 35 35 60 114 34

Characters j 9 l d “ 1 EOT t 6 FF H VT GS

ASCII 106 57 108 100 34 49 04 116 54 12 72 11 29

Characters ETB h GS G $ 8 / DC3 s j E 5 F

ASCII 23 104 29 71 36 56 47 19 115 106 69 53 70

Characters j k j _ t . ,

ASCII 106 107 106 95 116 46 44

When this was sent to the receiver’s end, it was again

decrypted successfully to obtain the original plaintext. This

exercise was performed to ensure that even for the same

message, the generated ciphertext is different, and is

sufficiently random.

The time complexity of the function ‘rand_key’ is O(1). It is

so because of the absence of any iterative or recursive nature

in the function. Whereas, the time complexity of the function

‘generate_key’ is O(n), where ‘n’ is the length of the key. The

algorithm presented in our work has the characteristics of a

stream cipher. It offers forward secrecy to the users involved

in the communication, due to the mathematical inability of the

attacker to compute the variable ‘next’ for any given iteration

of the function ‘rand_key’ and ‘generate_key’, due to the lack

of required necessary information.

The proposed cipher is designed to rectify a number of

shortcomings of the original symmetric key system, in order to

make it more secure, with a small trade-off on runtime. The

following discussion tries to observe the security of the cipher

against some of the possible attacks that can be performed on

it, to gain some insight about the plaintext, or the keys.

In a ciphertext-only attack, the attacker has access to various

encoded messages. He has no clue what the plaintext

information or the secret key might be. The attack is

considered successful if any amount of information regarding

the underlying plaintext can be extracted, from the given

ciphertext, or in some cases the key itself. This is the pinnacle

of an attacker’s ambition, and so it should be ensured that the

ciphertext does not divulge any significant data, when

subjected to various cryptanalysis techniques. The algorithm

proposed here has been subjected to the same, and to the best

of our knowledge, is secured against such techniques.

In a known-plaintext attack, the eavesdropper/attacker has

access to the ciphertext and its relating plaintext. He then tries

to figure out the secret key or build up an algorithm which

would enable him to decode any further messages. This gives

the attacker considerably greater chances of breaking the

cipher, than just by performing a ciphertext-only attack. This

can be potentially used against our algorithm if the length of

the known part of the sent message is greater than that of our

key at that instance of communication. It is so, because then

our algorithm will make a cyclic repetition of the key, and this

will result in the revelation of the complete key sequence to

the attacker. This will allow him to decipher all the data

encrypted in that instance. But, on a brighter side he still

won’t be able to predict the preceding and the succeeding keys

without the knowledge of sufficiently long plaintext-ciphertext

pairs in the following interaction, i.e. providing forward

secrecy. This revelation for a given instance can also be ruled

out if it is ensured that the size of the message being sent is

kept shorter than that of the obtained key.

Our algorithm does not provide any security against a Man-In-

The-Middle attack. In order to establish each other’s identity,

any certification algorithm may be engaged before the

deployment of our algorithm.

IV. CONCLUSION

The basic version of private key cryptosystem faces

numerous security threats, due to its superficial security

measures. In this paper we have proposed an algorithm which

can be used to improve symmetric key cryptography where, we

change the key every-time a message is shared between the

sender and the receiver, in such a way that the previous and the

succeeding keys do not share any direct correlation with each

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 6, Issue 2 (MARCH-APRIL 2018), PP. 76-81

81 | P a g e

other, thus ensuring forward secrecy. It also ensures that the

key being generated is also a function of the indexing of the

communication sequence so as to increase the complexity of

breaking the given cipher.

This security improvement is beneficial because the

Symmetric key encryption finds application in many fields,

including some other cryptographic algorithms which have the

private key cryptosystem as one of their sub-steps. This

development will ensure a better standard of security, to

provide a comparatively safer and trustworthy mode of

communication.

The underlying idea can be improved further-on if the need

is so, to counter-act the ever-growing ease of computation. The

algorithm can also be used in conjunction with other

protocols/ciphers to incorporate advanced security measures

like identity verification, chaotic maps for enhanced random

behaviour, etc.

REFERENCES

[1] Smart, N. (December 30th, 2004). Cryptography: An

Introduction, 3rd Edition, McGraw-Hill College.

[2] Kahate, A. (January 1st, 2008). Cryptography and Network

Security, McGraw-Hill Education (India).

[3] Singh, S. (September 1999). The Code Book, Fourth Estate

(United Kingdom).

[4] Wheeler, D., Needham R. (1994). TEA, a Tiny Encryption

Algorithm, Cambridge University, England (United Kingdom).

[5] Singh, P., Shende P. (December 2014). Symmetric Key

Cryptography: Current Trends, Chhatrapati Shivaji Institute of

Technology (India)

[6] Rejani, R., Krishnan, D. (2015). Study of Symmetric key

Cryptography Algorithms, Manonmanium Sundarnar

University(India)

[7] Stallings W. (2006), Cryptography and Network Security:

Principles and Practices, 4th Ed., Pearson Education

[8] Iqbal, S., Singh, S., Jaiswal, A. (May 2015). Symmetric Key

Cryptography: Technological Developments in the Field,

International Journal of Computer Applications (0975 – 8887)

Volume 117 – No. 15

[9] Pandey, K., Rangari, V., Sinha, S. (July 2013). An Enhanced

Symmetric Key Cryptography Algorithm to Improve Data

Security, AISECT, Bhopal(India).

[10] Nath, A., Ghosh, S., Mallik, M. (July 2010). Symmetric key

cryptography using random key generator, Proceedings of

International conference on SAM2010 held at Las Vegas,Vol-2,

and P-239-244.

APPENDIX

ASCII table: Winter, Dik T. (2010) [2003]. US and

International standards: ASCII.

