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Abstract: In the present paper, applicability and 

capability of A.I techniques for effort estimation prediction has 

been investigated. It is seen that neuro fuzzy models are very 

robust, characterized by fast computation, capable of handling 

the distorted data. Due to the presence of data non-linearity, it is 

an efficient quantitative tool to predict effort estimation. The one 

hidden layer network has been developed named as OHLANFIS 

using MATLAB simulation environment.  

Here the initial parameters of the OHLANFIS are 

identified using the subtractive clustering method. Parameters of 

the Gaussian membership function are optimally determined 

using the hybrid learning algorithm. From the analysis it is seen 

that the Effort Estimation prediction model developed using 

OHLANFIS technique has been able to perform well over normal 

ANFIS Model.  
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I. INTRODUCTION 

Effort estimation of computer system software projects 

design play very significant role in the expansion of the 

software projects. When a estimated effort is less than the 

actual effort involved then it  may generate number of issue 

that can directly effects the  project quality, purposed time of 

completion, pressure on developing experts in terms of 

working overtime. A general issue in programming effort 

estimation is that verifiable information regularly holds an 

inclination to the goal that these information cannot directly be 

utilized for advancement of expense estimation devices, 

individually for the adjustment of such instruments and 

looking at estimations against its true or recorded effort value.  

Accurate effort and scheduling estimations provide very 

highly valuable medium in a number of designing decisions, 

financial expense decisions, and team work allocations and in 

supporting reliable bids for contract competition[1]. 

Evaluating programming improvement sets back the 

finances with correctness is generally a very troublesome 

regular approach for enhancing programming or software 

performance. The extra objective of having the capacity to 

anticipate the expenses and calendar at the start of the venture 

can end up being all the more testing. Unanticipated forecast 

of finishing time is completely vital for fitting development 

arranging and abhorrence of the project[2,3]. 

Nevertheless, utilizing the whole database of accessible 

programming effort estimation displays, researchers found that 

there is no confirmation that programming models are 

adequate at assessing ventures at an early phase of framework 

improvement. 

 

A. Problem of object-oriented software effort 

estimation: 

Many object-oriented software effort estimation methods 

have been proposed over the last decade. Effort prediction 

models using object-oriented design metrics can be used for 

obtaining estimates about software project performance and 

quality. In practice, effort estimation means either estimating 

reliability or maintainability [4]. Reliability is generally 

represented as the number of pre-release or post-release 

defects. Hence by effort estimated the number of active 

defects can also be normalized by a size measure to obtain a 

defect density estimate. Another parameter is related to issue 

of maintainability which is normally represented as a change 

effort. Change effort is explained as: ‘either the average effort 

to make a change to a class or the total effort spent on 

changing a class’. There is great interest in the use of object-

oriented based approach in software engineering. With the 

increasing use of object-oriented methods in new software 

development there is a growing demand to both in documents 

and current practices in object-oriented design and 

development. 

Many methods have been proposed in the last two 

decades to estimate the quality of object-oriented software 

code and design efforts and used for detecting fault-proneness 

of classes. Most of the OOS effort estimation methods have 

some limitations that the organizing heads and developers 

need to be aware of [3, 5] so that the effort estimation may be 

viewed as valuable tools in the software engineering process. 

A common approach concerning the OOS effort 

estimation based models is that they base their effort and 

scheduling predictions on the estimated size of the software 

project at  hand , in terms of number of lines of code (LOC), 

or thousands  of lines of code (KLOC). In most of the 

methodologies the OOS effort estimation is based upon an 

equation similar to: 

 

E = A + B*(KLOC)C         1(a) 

 

where E  stands for estimated effort (usually in many 

months), A, B, and C are constants, and KLOC is the expected 

number of thousands of lines of  code in the final system. 

From the above equation it is easy to see that a given 

percentage error in the size (KLOC) may cause an even larger 

percentage error in the estimated effort. For instance, in 

COCOMO a 50% error in the size estimate will roughly result 

in a 63% error in the effort estimate. [3, 4, 6, 8, 15]. Many 

investigations using statistical methods had been made to 

predict software quality. In this paper we focused on the 

object-oriented software effort estimation approach. This 

document explores object-oriented paradigm that exhibits 

different characteristics from the procedural paradigm and the 

different software metrics that has been defined and used. We 

proposed various artificial intelligence based optimization 

approach that aims to predict object oriented software design 
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effort by using the number of lines other software design 

related parameters. We have considered software design 

metrics concerning with inheritance related measures, 

cohesion measures, coupling measures, complexity measures 

and size measure. We discussed about network and fuzzy 

based predictors to improve estimation results for OOS design. 

Neural network based method is a back propagation network 

with different activation functions. They are applied to hidden 

layer slabs to detect different features in a pattern processed 

through a network to lead to better prediction. By using proper 

functions in one hidden slab we can detect feature in the mid-

range of the data and the complement of chosen function in 

another hidden slab is used to detect features for the upper and 

lower extremes of the data. Thus, the output layer will get 

different “views of the data”. Combining the two feature sets 

in the output layer leads to a better estimation.  

Another architecture that we have chosen is the Adaptive 

neuro-fuzzy inference system (ANFIS).It is a memory-based 

network that provide estimates of continuous variables and 

converges to the underlying (linear or nonlinear) regression 

surface. This is a one-pass learning algorithm with a highly 

parallel structure. Even if the data is sparse in a multi-

dimensional measurement space; the ANFIS algorithm [6] 

provides smooth transitions from one observed value to 

another. Most of these prediction models can be built using 

statistical models. A.I techniques have seen an explosion of 

interest over the years, and are being magnificently applied 

over a large range of problem domains, in areas as diverse as 

finance, medicine, engineering, geology and physics. Indeed, 

in the cases there are problems of prediction, classification or 

control, these methods are being introduced. We have found 

that these methods can be used as a predictive model because 

it is very sophisticated modeling techniques capable of 

modeling complex functions. 

 

B. Framework work for object oriented s/w effort 

estimation 

The COCOMO model database is used due to its 

popularity for software effort estimation. This dataset has been 

validated on estimation of large projects at consulting firm, 

Teen Red Week (TRW) software production system (SPS) in 

California, USA [8]. The structure of the dataset has been 

divided on the basis of the parameters of projects to be 

handled. The projects are categorized as organic, 

semidetached, and embedded. The model structure that we 

have followed is represented as follows: 

Effort=𝑎∗(KLOC)𝑏           (1b) 

Here a and 𝑏 are domain specific constants. For estimating the 

object oriented software development effort, 𝑎 and 𝑏 have 

been adjusted on the past data set of various projects. Five 

scale factors are considered to generalize and demonstrate the 

effects of the development mode in COCOMO II [9,10]. There 

are fifteen constraints which acts as parameter that can affect 

the effort involved in the software development. These 

constraints are analyst capability (𝑎𝑐𝑎𝑝), programmer 

developer capability (𝑝𝑐𝑎𝑏), application related expertise 

(𝑎𝑒𝑥p), modern based programming expertise (𝑚𝑜𝑑exp), 

software tools involved in development, design and testing 

(𝑡𝑜𝑜𝑙), virtual memory experience (V𝑒𝑥𝑝), language expertise 

(𝑙𝑒𝑥𝑝), scheduling constraint (𝑠𝑐𝑒𝑑), main memory constraint 

(𝑠𝑡𝑜𝑟), database size requirement (𝑑𝑎𝑡𝑎), CPU related time 

constraint (𝑡𝑖𝑚𝑒), turnaround time (𝑡𝑢𝑟𝑛), machine volatility 

(V𝑖𝑟𝑡), process complexity (𝑐𝑝𝑙𝑥), and reliability of the 

required software (𝑟𝑒𝑙𝑦): 

Effort=𝑎∗(KLOC)𝑏∗𝑐                  (2) 

KLOC is directly computed from a function point analysis and 

𝑐 is the product of fifteen effort multipliers hence effort can be 

represented as: 

Effort=𝑎∗(KLOC)𝑏∗(EM1∗EM2∗⋅⋅⋅∗EM15)        (3)                  

Above prediction model of software development effort 

estimation is applied to estimate the software development 

effort by using sixteen independent specifications named as 

𝑟𝑒𝑙𝑦, 𝑑𝑎𝑡𝑎, 𝑐𝑝𝑙𝑥, 𝑡𝑖𝑚𝑒, 𝑠𝑡𝑜𝑟, V𝑖𝑟𝑡, 𝑡𝑢𝑟𝑛, 𝑎𝑐𝑎𝑝, 𝑎𝑒𝑥𝑝, 

𝑝𝑐𝑎𝑏,V𝑒𝑥𝑝, 𝑙𝑒𝑥𝑝, 𝑚𝑜𝑑𝑝, 𝑡𝑜𝑜𝑙, 𝑠𝑐𝑒𝑑 and 𝑘𝑙𝑜𝑐. 

 

All these sixteen parameters are used as input vector in one 

hidden layer feed forward ANFIS network discussed in next 

section. 

 

C. Effort Estimation Using One Hidden Layer ANFIS 

Network (OHLANFIS) 

Through back propagation with gradient descent training, 

mapping between input vectors and output vectors an ANFIS 

network has been developed with the target of minimization of 

the sum of squared error at output layer. The optimal weight 

vectors are evaluated for the network to estimate the software 

development effort of database given in COCOMO II model 

for object oriented software projects. The optimal weight 

vector obtained from ANFIS network is being used as testing 

the results for an optimized network with minimum root mean 

square error value and high regression. 

OHLANFIS is developed with gradient descent back 

propagation learning method for optimizing this model in 

reference of estimation of the object oriented software 

development effort. 

We have considered input vector 𝑋𝑇𝑘=(𝑥1;𝑥2;...𝑥𝑛) 

where 𝑛=16 and output vector 𝐷𝑇𝑘=(𝑑1;𝑑2;...𝑑𝑝). The 

OHLANFIS network is trained by using the input and output 

vector mapping. 𝑃 is set of 𝑄 training vector pairs: 

𝑃= {𝑋𝑘, Dk  }Q 
k=1    (4) 

𝑋𝑘∈ Rn and  𝑘∈𝑅𝑝, where𝑛=16, 𝑝=1, and 𝑄=40. 

Here neuro-fuzzy rules are generated for 𝑘 output signal 

vector(𝑌𝑘)and𝑌𝑘 is vector of activations of output layer fuzzy 

rules. Error at 𝑘th training pair (𝑋𝑘, Dk ) is evaluated as  

follows: 

𝐸𝑘=𝐷𝑘− f(𝑌𝑘 ),     (5) 

 Where, 𝐸𝑘 =(𝑒𝑘1,...𝑒𝑘𝑝)𝑇 

= (𝑑𝑘1−f(𝑦𝑘1),...,𝑑𝑘𝑝−𝑓(𝑦𝑘𝑝))𝑇     (6) 

The squared error is considered taken as sum of squares of 

every individual output error 𝑒𝑘𝑗 given as: 

𝜉𝑘=1/2.∑(𝑑𝑘𝑗 −𝑓(𝑦𝑘𝑗))2=1/2.𝐸k𝑇𝐸𝑘  (7) 

The MSE is computed over the entire training set 𝑃: 

MSE=1/𝑄∑𝜉𝑘.    (8) 

The weights between hidden and output layer are updated as 

𝑤𝑘+1 ℎ𝑗 =𝑤𝑘ℎ𝑗+Δ𝑤𝑘ℎ𝑗      (9) 

and the weights between input and hidden layer are updated as 

 𝑤 𝑘+1
𝑖ℎ =𝑤𝑘𝑖ℎ +Δ𝑤𝑘𝑖ℎ              (10) 

where Δ𝑤𝑘ℎ𝑗 and Δ𝑤𝑘𝑖ℎ are weight changes computed in 

previous step. 
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These weights are iteratively updated in output and hidden 

layers by the following equations: 

Δ𝑤 𝑘+1
ℎ𝑗 =Δ𝑤𝑘ℎ𝑗+𝜂(𝑧𝑘ℎ), 

Δ𝑤 𝑘+1
𝑖ℎ =Δ𝑤𝑘𝑖ℎ+𝜂𝛿𝑘𝑋𝑥𝑘𝑖        (11) 

We can introduce the momentum into back propagation with 

the help of the following equations: 

Δ𝑤𝑘ℎ𝑗=𝜂(𝑧𝑘ℎ)+𝛼Δ𝑤𝑘−1
ℎ , 

Δ𝑤𝑘𝑖ℎ=𝜂𝛿𝑘ℎ𝑥𝑘𝑖 +𝛼Δ𝑤𝑘−1
𝑖ℎ     (12) 

 

Back propagation propagates changes back because it can do 

substantial good thing. The change in 𝑂𝑗 should be 

proportional to (1−𝑂j ) the slope of the threshold function, at 

node 𝑘.The change to 𝑂𝑗 should also be proportional to 𝑊𝑗𝑘 

the weight on the link connecting node 𝑗 to node 𝑘. 

Summing over all nodes in layer 𝑘 = ∑𝑘𝑤(1−𝑂𝑘)𝛽𝑘. 

At the output layer, the benefit has been given by the error at 

the output node. The output layer 𝑧 will be benefited as 

𝛽𝑧=𝑑𝑧−𝑜𝑧. 

 Here a rate parameter 𝑟 has been introduced for controlling 

the learning rate. So change in 𝑤𝑖𝑗 is proportional to 𝑟; that is, 

Δ𝑤𝑖𝑗 =𝑟(1 − 𝑂𝑗)𝛽 

𝑗 and 𝛽𝑗 =∑𝑘𝑊𝑗𝑘(1 −𝑂𝑘)𝛽𝑘 for nodes in hidden layers and 

𝛽𝑧 =𝑑𝑧−𝑜𝑧 for nodes in the output layer. The output of the 

network is compared with desired output; if it deviates from 

desired output, the difference between actual output and the 

desired output is propagated back from the output layer to 

previous layer to modify the strength or weight of connection. 

 

II. RESULTS FOR OHLANFIS BASED OOS EFFORT 

ESTIMATION 

Here the OHLANFIS model has been trained tested by 

neuro-fuzzy based algorithm and their performance for the 

best prediction model are evaluated and compared for training 

and testing data sets separately. The RMSE performances of 

the model both for training and testing datasets have been 

plotted separately in Fig. 1 & Fig.2 and their corresponding 

range of values (minimum and maximum) are summarized in 

Table 1. 

 
Fig. 1 Graphical plot of RMSE value variation during 

training 

 

 
Fig. 2 Graphical plot of RMSE value variation during 

testing 

 

TABLE  1: RANGE OF RMSE VAL. DURING TRAINING AND 

TESTING  PHASE 

 RMSE Value 

 Minimum   Maximum  

Training 

datasets 

0.4824 2.8096 

Testing 

datasets 

186.41 188.41 

 

Further Table 2 gives the RMSE values using both the normal 

ANFIS and OHLANFIS techniques. 

 

TABLE 2 : PERFORMANCE EVALUATION USING RMSE 

CRITERIA 

 Using Normal 

ANFIS 

Using  

OHLANFIS 

RMSE Val. 532.2147 112.638 

 

From analysis of Fig. 1 & Fig. 2 and perusal of the data 

given in tables 1 and 2 it is inferred that during training phase 

(Fig.1), there is zig zag variation in the RMSE values, having 

a minimum value of 0.4824 (at epoch 8) and a maximum 

value of 2.8096 ( epoch 3). Hence during training phase there 

is initially a rise in the RMSE value and then there is a fall at 

epoch no. 8, after which there is again a slight increase. On the 

other hand, during testing phase (Fig.2) of OHLANFIS 

training initially upto epoch 4 the RMSE value decreases and 

reaches upto a minimum of 186.41 and then there is steep rise 

in the RMSE value upto 10 epochs, where the maximum value 

reached is 188.41. From the above analysis it can be inferred 

that ANFIS has performed better during training phase than 

testing phase but its overall RMSE value is 112.638. which 

shows a marked improvement than those calculated in 

COCOMO model i.e. 532.2147 ( given above in Table 2).  

 

III. CONCLUSION 

The absolute values of Mean of Relative Error (MRE) 

calculated both for normal ANFIS and OHLANFIS and their 

comparative plot, both for training and testing are compared. 

From the perusal of both the data and the graphical plot, it is 

seen that during the training as well as testing phase of the 

OHLANFIS model development, the absolute values of the 
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MRE are very less as compared to normal ANFIS model, 

especially during training phase. Since Absolute MRE 

computes the absolute percentage of error between the actual 

and predicted effort for each referenced project, hence from 

the above data analysis it can be inferred that the absolute 

percentage of error between the actual and predicted effort 

using OHLANFIS technique is far less than those using 

normal ANFIS model. Thus, it is clear that proper selection of 

influential radius which affects the cluster results directly in 

ANFIS using substractive clustering rule extraction method, 

has resulted in reduction of RMSE and MRE both for training 

and testing data sets.  Hence, it is seen that for small size 

training data, OHLANFIS has outperformed normal ANFIS 

model.  
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