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Abstract— This paper deals with certain configuration spaces 

where the underlying geometry is sub-Riemannian because of the 

physical constraints arising out of the mechanical systems we are 

interested in. A motivated introduction to Sub-Riemannian 

structures is included following which we look at the broad 

science of mechanics where in the sub-Riemannian geometric 

study aids us to talk about applications like robotics and image 

analysis. 
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I. INTRODUCTION 

Physical dynamical systems involve a geometric 

space equipped with a topology and a phase space coming 

out of operators acting on the space. We consider the 

functionals arising out of the constrained motions in the 

Euclidean space E3. The dynamical systems considered here 

are tracking the state of the mechanical systems in question, 

in terms of the local coordinates. The controls applied are 

on the velocity vectors of the mechanical system which 

essentially leads to a non-integrable distribution due to a 

nonholonomic constrained environment. One of the main 

problems is to determine whether there is a continuous 

curve tangent to the distribution and connecting any two 

given points. A sub-Riemannian metric actually solves the 

optimization problem described here, but the challenge is to 

choose the correct sub-Riemannian metric among the 

infinite choices of such a metric. The global connectivity by 

special kind of curves that are tangent to the distribution can 

be established by the bracket generating property. 

In section 1 we introduce the distributions on a sub-

Riemannian manifold and mention the key examples. We 

also discuss the issue of optimal control in the setting of 

sub-Riemannian geometry. We then expound in section 2 

on the interesting Lie group structures. In section 3 we 

come to the mechanical set-up where we apply the 

geometric/topological theory to some interesting problems. 

We conclude the exposition with several extensions of this 

theory. 

II. SUB - RIEMANNIAN SETTING  

Let (M, g) be a Riemannian manifold. Then an inner 

product gp can be defined an each tangent space TpM at all 

points pM, note that  this implies the existence of a smooth 

map        p → gp(X(p),Y(p)) for every pair of vector fields X,Y 

on M.This family of continuously varying inner products leads 

to a Riemannian metric  on M. With this metric various 

geometric features on M can be described, inparticular 

distances between two points, angles between two lines, 

geodesics etc.can be computed using ‘g’. In many specialized 

applications one however restricts tangents to certain 

horizontal subspaces. Here one considers a smooth vector 

distribution say ∆ and then the metric tensor ‘g’ is restricted 

only to ∆-horizontal subspace ∆q. 

Definition 2.1(Distribution) [4]: Let H = span {X,Y} be the 

distribution generated by the vector fields X and Y. Since [Y, 

X]=2TH it follows that H is not involutive, we can write 

L(s3) = H  Rt. The distribution H will be called the 

horizontal distribution. Any curve on the sphere which has the 

velocity vector contained in the distribution H will be 

horizontal curve. 

 Such a manifold (M, ∆, g) is called a Sub-

Riemannian manifold. Since the metric is restricted to the 

distribution ∆ on M. Further the topology of a such a manifold 

is the one induced by the Sub-Riemannian distance given as 

follows. 

 

Definition 2.2 (Sub-Riemannian Distance): Consider a Sub-

Riemannian manifold (M, ∆, g) and a Lipschitzian horizontal 

curve  γ: I  R  M, γ(t)  ∆γ(t) for almost all tI. The length 

of γ is given as length (γ) =  , where gγ(t)  is 

the inner product in ∆γ(t). The sub-Riemannian distance 

between two points p, qM is length of the shortest curve 

joining p to q: 

d

 In this exposition, we consider some applications of 

such a structure so as to bring out the utility of developing 

sub-Riemannian geometry. 

III. SUB-RIEMANNIAN PROBLEM: 

Consider a drift less dynamical system on Sub-Riemannian 

manifold (M, ∆, g): 

 (u1,……..um) Rm. 

The problem of finding horizontal curves  from 

initial state qo to final state q1 with shortest sub-Riemannian 

distance d(qo;q1) and tangent to a given distribution  ∆g  TqM 

is called sub-Riemannian problem. 

Example 3.1: (Sub-Riemannian Structures) 

The Lie group SH(2): 

The group SH(2) can be represented by third order matrices: 

M= SH(2) =  

The Lie group SH(2) comprises three basis one-parameter 

subgroups given as: 

w1(t) =  , w2(t) =  ,  
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w3(t)=  

Whereas basis for Lie algebra are the tangent 

matrices Ai = /t=0 to the sub-groups of Lie group SH(2). 

Ai are given as : 

A1=  , A2 = ,    A3 =  

The Lie algebra is thus : 

L = TIdM= sh(2) = span {A1,A2,A3}. 

The multiplication rule for L is [A, B] = AB – BA. 

Therefore, the Lie bracket for sh(2) is given as  [A1, A2]= A3, 

[A1, A2] = A2 and [A2, A3] = 0. 

Example 3.2 (Sub-Riemannian structure on S3): 

We consider the parametrization of s3 in terms of the 

Euler angles, which due to spherical symmetry are more 

suitable than the Cartesian coordinates. 

Consider  , ,  to be the Euler’s angles and let             

 =  ,    =  . 

The sphere S3 can be parametrized as  

 x1 = , 

 x2 = , 

y1= , 

y2= , 

with 0    ,  -    , In the following we shall write the 

restriction of the one-form to S3 using Euler’s angles. Since 1 

  dx1 =  

  dx2 = cos  

  dy1 =  

  dy2 =  

we obtain, 

 = x1 dy1 – y1 dx1 + x2dy2 – y2dx2 

          =  

            

+  

          + 

 

         =  

 

         =  

         = . 

w/s3 = . 

The constraint s =0 is 

nonholonomic since 

2dw = cos d  + sin cosdd-sind d  0. 

The sub Riemannian structures discussed in the above 

examples have some very non trivial applications in 

mechanics, robotics and image analysis. If Wi denotes the 

Hamiltonian associated with the vector field Xi, then we have 

the following Poisson brackets.{W1,W2} =W3, {W1,W3}= W4, 

{W2,W3}=W3. In optimal control problems we get control 

system of the form  =  

Where x belongs to a configuration space which is a 

smooth manifold, and the functions ui are control functions 

taking values in a fixed compact convex set in Rm. 

The control dependent Hamiltonian that denotes the total 

energy is written as: 

W(u) =-(0)/2[ ]+u1W1+u2W2+…..unWn. 

If a trajectory t------>g(u) is optimal then it is the projection of 

an extremal curve t------> z(g, p) 

Satisfying Hu(z) greater or equal to Hv(z)  for all admissible 

controls v. 

Since the admissible controls satisfy the sub-

Riemannian geometry we enter into the realm of sub 

Riemannian structures. 

In Robotics the constraints are linear and hence we 

consider subriemannian spaces which have a structure of a Lie 

group. The Heisenberg group and SU(2) are standard 

examples. 

There are two basic problems faced by engineers 

namely the forward kinematic problem and the inverse 

kinematic problem. The very subtle problems the engineers 

face in such exploration are precisely inverse kinematic 

problems. The configuration space we considered earlier 

makes a presence here in the forward kinematics problem. 

Here we are given a configuration of the system with all 

possible joints and we need to arrive at the end configuration 

system. The configuration space QF is a Cartesian product of 

the spaces of individual joints of the manipulators as discussed 

above. Hence the forward kinematics problem is represented 

as : (3)g Q SE where Q  is the total configuration space 

and (3)SE  is the set of all rigid motions of the 3-dimensional 

Euclidean space.  The mapping g  is essentially a composition 

of rigid motions due to individual joints. We next consider the 

notion of a workspace W.  

W= ( ) : (3)g Q SE    . The remote sensing 

capabilities for an automated mission are achieved by 

considering this subspace of the 3-dimensional Euclidean 

space. In the inverse kinematic problem we are given a desired 

end configuration and we need to build a robotic system such 

that the set of all controls 
i  leads to the end configuration. It 

is in this situation algebraic geometry is heavily used. For 

example in the plane a two-link manipulator has to satisfy the 

following equations  

1 1 2 1 2cos cos( )x l l     …….(1) 

1 1 2 1 2sin sin( )y l l     ……..(2) 

By using the 2 equations one determines answer for the 

forward problem essentially by solving for 
1  and 

2  given x 

and y. Thus one has a set of equations in more realistic 

examples and we need to determine the parameters involved.  

IV. IMAGE ANALYSIS PROBLEM: 

For image analysis from a neurobiological viewpoint 

we should be interested in measurements of images. Thus 

images can be parameterized by location, log-width, and 

orientation. While log width distinguishes various scaling of 
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measurements orientations distinguishes the possible rotations. 

Thus the space of measurements I = M x U. where 

M=R2xRxS1a four dimensional differentiable manifold. U is 

the set of all possible measurement results. 

Fixing width one gets a standard circle principle bundle. 

Any curve in the measurement space must have its orientation 

and location tangents aligned. Thus with this constraint, we are 

led to a sub Riemannian structure on I.  

Let =dx2 – tandx1= 0 …..(1) be the equation defining the 

constraint referred to as the cotangent equation in []. If we 

restrict our curves to this distribution respecting (1) then we 

get into the realm of sub Riemannian geometry. 
 

The unit 3- sphere centered on the origin is the set of R4 

defined by 

S3 = { (x1,x2,x3,x4)  R4 : x1
2 + x2

2 + x3
2 + x4

2 = 1)}. 

It is often convenient to regard R4 as two complex dimensional 

space C2 or the space of quaternion H. The unit 3- sphere is 

given by  

S3 = {(z1,z2)C2 : z12 + z22 = 1} or 

S3 = {(q H :q2 = 1)}. 

   The latter description represents the sphere S3 as a set of unit 

quaternions and it can be considered as a group Sp(1), where 

the group operation is just a multiplication of quaternions. The 

group sp(1) is a 3 – dimensional Lie group , isomorphic to 

SU(2) by the isomorphism C2 (z1 z2)------>q H. The unitary 

group SU(2) is the group of matrices  , z1 ,z 2  C, 

z12 + z22 = 1 

       Where the group law is given by the multiplication of 

matrices. Let us identify R3 with pure imaginary quaternions. 

The conjugation qh  of a pure imaginary quaternions h by a 

unit q defines rotation in R3, and sinceqh = h, the map h-

--->qh  defines a two–to-one homomorphism Sp(1) ----> 

SO(3). The Hopf map  : S3 ---> S2  can be defined by  S3  q 

-----> qi n= (q) S2. 

The Hopf map defines a principle circle bundle also 

known as principal bundle. Topologically S3 is a compact, 

simply connected, 3- dimensional manifold without boundary. 

V. CONCLUSIONS 
In this exposition we have considered simple mechanical 

systems where the goal is to optimize the energy functionals in 

such a way that the system satisfies the constraints of the 

possible dynamics. There several examples of physical 

dynamical systems like to bicycle dynamics problem with oval 

wheels where the description of controllability is quite subtle. 

Here one can view the problem in terms of kinematic 

controllability. One can extend the study for a class of local 

kinematic controllability problems and develop conditions on 

the vectorfields so as to achieve the desired optimization. 
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