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Abstract — This project proposes a efficient Montgomery 

multiplication algorithm such that the high-performance 

Montgomery modular multiplier can be implemented 

accordingly. The proposed multiplier receives and outputs 

the data with binary representation and uses only one-level 

carry-save adder (CSA) to avoid the carry propagation at 

each addition operation. This CSA is also used to perform  

format conversion from the carry save format to the 

binary representation, leading to a low hardware cost and 

short critical path delay at the expense of extra clock 

cycles for completing one modular multiplication. To 

overcome the weakness, a configurable CSA (CCSA), 

which could be one full-adder or two serial half-adders, is 

proposed to reduce the extra clock cycles for operand 

precomputation and format conversion by half. In 

addition, a mechanism that can detect and skip the 

unnecessary carry-save addition operations in the one-

level CCSA architecture while maintaining the short 

critical path delay is developed. As a result, the extra clock 

cycles for format conversion can be hidden and high 

throughput can be obtained. For carry out the 

Montgomery multiplication more quickly configurable 

carry save adder is replaced with kogge-stone adder. and 

thus increases the frequency of operation and decreases 

propagation delay than previous designs. 

 

Index Terms — Carry-save addition, Montgomery 

modular multiplier, public-key cryptosystem ,kogge-stone 

adder. 

I.  INTRODUCTION 

In many  public-key cryptosystems  modular multiplication 

(MM) with large integers is the most critical and time-

consuming operation. Therefore, numerous algorithms and 

hardware implementation have been presented to carry out the 

MM more quickly, and Montgomery’s algorithm is one of the 

most well-known MM algorithms. Montgomery’s algorithm  

determines the quotient only depending on the least significant 

digit of operands and replaces the complicated division in 

conventional MM with a series of shifting modular additions to 

produce S = A × B × R−1 (mod N), where N is the k-bit 

modulus, R−1 is the inverse of R modulo N, and R = 2^k mod 

N. As a result, it can be easily implemented into VLSI circuits 

to speed up the encryption/decryption process. However, the 

three-operand addition in the iteration loop of Montgomery’s 

algorithm  requires long carry propagation for large operands 

in binary representation. To solve this problem, several 

approaches based on carry-save addition were proposed to 

achieve a significant speedup of Montgomery MM. the 

representation of input and output operands, these approaches 

can be roughly divided into semi-carry-save (SCS) strategy and 

full carry-save (FCS) strategy. In the SCS strategy the input 

and output operands (i.e., A, B, N, and S) of the Montgomery 

MM are represented in binary, but intermediate results of 

shifting modular additions are kept in the carry-save format to 

avoid the carry propagation. However, the format conversion 

from the carry-save format of the final modular product into its 

binary representation is needed at the end of each MM. This 

conversion can be accomplished by an extra carry propagation 

adder (CPA) or reusing the carry-save adder (CSA) 

architecture iteratively. Contrary to the SCS strategy, the FCS 

strategy maintains the input and output operands A, B, and S in 

the carry-save format, denoted as (AS, AC), (BS, BC), and 

(SS, SC), respectively, to avoid the format conversion, leading 

to fewer clock cycles for completing a MM. Nevertheless, this 

strategy implies that the number of operands will increase and 

that more CSAs and registers for dealing with these operands 

are required. Therefore, the FCS-based Montgomery modular 

multipliers possibly have higher hardware complexity and 

longer critical path than the SCS-based multiplier. 

 

Kuang et al. have proposed an energy-efficient FCS based 

multiplier (denoted as FCS-MMM42 multiplier) in which the 

superfluous operations of the four-to-two (two-level) CSA 

architecture are suppressed to reduce the energy dissipation and 

enhance the throughput. However, the FCS-MMM42 

multiplier still suffers from the high area complexity and long 

critical path delay. Other techniques, such as parallelization, 

high-radix algorithm, and systolic array design, can be 

combined with the CSA architecture to further enhance the 

performance of Montgomery multipliers. However, these 

techniques probably cause a large increase in hardware 

complexity and power/energy dissipation which is undesirable 

for portable systems with constrained resources.This paper 
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aims at enhancing the performance of CSA-based Montgomery 

multiplier. The proposed algorithm and hardware architecture 

have the following several advantages and novel contributions 

over previous designs. First, the one-level CSA is utilized to 

perform not only the addition operations in the iteration loop of 

Montgomery’s algorithm but also B + N and the format 

conversion, leading to a very short critical path and lower 

hardware cost. However, a lot of extra clock cycles are 

required. the unnecessary carry-save addition operations  while 

keeping a short critical path delay. Therefore, the required 

clock cycles for completing one MM operation can be 

significantly reduced. We also proposes a multiplier using 

kogge-stone adder. this will increases the frequency of 

operation and also decreases the propagation delay. As a result, 

the proposed Montgomery multiplier can obtain higher 

throughput. 

 

II. EXISTING ARCHITECTURES 

A. CSA Based Montgomery Multiplication  

Montgomery multiplication algorithm is the most efficient 

algorithm available. The main advantage of Montgomery 

algorithm is that it replaces the division operation with shift 

operations. During two decades many alternative forms of 

Montgomery algorithms are introduced. These architectures 

use carry save addition. The work in [10] presented two types 

of Montgomery algorithms which use Carry Save Adder 

(CSA). One of the two types used four-to two CSA and the 

other used five-to-CSA. They had given a brief comparison 

between these two versions of Montgomery multipliers. They 

had found that the multiplier using four-to-two CSA 

architecture has shorter critical path than that of five-to-two 

CSA multiplier. But extra storage elements and multiplexers 

are required for 4-to-2 architecture which probably increases 

the energy consumption. The previous work proposed a 

Montgomery multiplication algorithm using pipelined carry 

save addition to shorten the critical path delay of five-to-two 

CSA. This method also required additional pipeline registers 

and multiplexers which will increase the area. Ming Der Shieh 

presented a new algorithm for high speed modular 

multiplication. This new Montgomery multiplier performs 

modular reduction in a pipelined fashion, so that the critical 

path delay is reduced from the four-to-two to three-to-two 

carry-save addition. Then it requires additional pipeline 

registers to store intermediate values. All the above works were 

not discussed about the energy consumption. Several previous 

works,have developed techniques to reduce the power/energy 

consumption of Montgomery multipliers. In [6], some latches 

named glitch blockers are located at the outputs of some circuit 

modules to reduce the spurious transitions and the expected 

switching activities of high fan-out signals in the radix-4 

scalable Montgomery multiplier. Shiann Rong Kuang tried to 

reduce the energy consumption of CSAs and registers in the 

CSA-based Montgomery multipliers via a new technique. They 

modified the CSA based Montgomery multiplier algorithm and 

as a result of this, the number of clock cycles required to 

complete the multiplication is largely decreased. To achieve 

further energy reduction, they have adjusted the internal 

structure of barrel register full adder and then applied the gated 

clock design technique. But this energy efficient algorithm 

increased the total area of the design 

 

B. SCS-Based Montgomery Multiplication  

 

In the SCS strategy the input and output operands of the 

Montgomery MM are represented in binary, but intermediate 

results of shifting modular additions are kept in the carry-save 

format to avoid the carry propagation. However, the format 

conversion from the carry-save format of the final modular 

product into its binary representation is needed at the end of 

MM.This conversion can be accomplished by an extra Carry 

propogation adder(CPA).A 32-bit CPA with multiplexers and 

registers (denoted as CPA_FC), which adds two 32-bit inputs 

and generates a 32-bit output at every clock cycle, was adopted 

for the format conversion. Therefore, the 32-bit CPA_FC will 

take 32 clock cycles to complete the format conversion of a 

1024-bit SCS-based Montgomery multiplication. The extra 

CPA_FC probably enlarges the area and the critical path of the 

SCS-MM-1 multiplier. 

   

 C. FCS-Based Montgomery Multiplication  

 

To avoid the format conversion, FCS-based Montgomery 

multiplication maintains A, B, and S in the carry save 

representations (AS, AC), (BS, BC), and (SS, SC), 

respectively. McIvor et al. proposed two FCS based 

Montgomery multipliers, denoted as FCS-MM-1 and FCS-

MM-2 multipliers, composed of one five-to two (three-level) 

and one four-to-two (two-level) CSA architecture, respectively. 

The barrel register full adder (BRFA) consists of two shift 

registers for storing AS and AC, a full adder (FA), and a flip-

flop (FF). For more details about BRFA, On the other hand, the 

FCS-MM-2 multiplier proposed adds up BS, BC, and N into 

DS and DC at the beginning of each MM. Therefore, the depth 

of the CSA tree can be reduced from three to two levels. 

Nevertheless, the FCS-MM-2 multiplier needs two extra 4-to-1 

multiplexers addressed by Ai and qi and two more registers to 

store DS and DC to reduce one level of CSA tree. Therefore, 

the critical path of the FCS-MM-2 multiplier may be slightly 

reduced with a significant increase in hardware area when 

compared with the FCS-MM-1 multiplier. Generally speaking, 

SCS-based multipliers have lower area complexity than FCS-

based Montgomery multipliers. 

 

III. PROPOSED MONTGOMERY MULTIPLIATION 

A. Critical Path Delay Reduction  

The critical path delay of SCS-based multiplier can be 

reduced by combining the advantages of FCS-MM-2 and SCS-

MM-2. That is pre compute D = B + N and reuse the one-level 

CSA architecture to perform B+N and the format conversion. 

Figure.1 shows the modified SCS-based Montgomery 

multiplication(MSCS-MM) hardware architecture, 
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respectively. The Zero D circuit is used to detect whether SC is 

equal to zero, which can be accomplished using one NOR 

operation. The Q_L circuit decides the qi value. The carry 

propagation addition operations of B + N and the format 

conversion are performed by the one-level CSA architecture of 

the MSCS-MM multiplier through repeatedly executing the 

carry-save addition (SS, SC) = SS + SC + 0 until SC = 0.In 

addition, we also pre compute Ai and qi in iteration i−1 so that 

they can be used to immediately select the desired input 

operand from 0, N, B, and D through the multiplexer M3 in 

iteration. Therefore, the critical path delay of the MSCS-MM 

multiplier can be reduced into TMUX4 + TFA. However, in 

addition to performing the three-input carry-save additions k + 

2 times, many extra clock cycles are required to perform B + N 

and the format conversion via the one-level CSA architecture 

because they must be performed once in every MM. 

Furthermore, the extra clock cycles for performing B+N and 

the format conversion through repeatedly executing the carry-

save addition (SS, SC) = SS+SC+0 are dependent on the 

longest carry propagation chain in SS + SC. If SS = 111…1112 

and SC = 000…0012, the one-level CSA architecture needs k 

clock cycles to complete SS + SC. 

 
Fig1.MSCS-MM multiplier[1 

 

B. Clock Cycle Number Reduction  

To decrease the clock cycle number, a CCSA architecture 

which can perform one three-input carry-save addition or two 

serial two-input carry-save additions is proposed to substitute 

for the one-level CSA architecture. Two cells of the one-level 

CSA architecture in Figure.2each cell is one conventional FA 

which can perform the three-input carry-save addition. Two 

cells of the proposed configurable FA (CFA) circuit. If α = 1, 

CFA is one FA and can perform one three-input carry-save 

addition (denoted as 1F_CSA). Otherwise, it is two half-adders 

(HAs) and can perform two serial two-input carry-save 

additions (denoted as 2H_CSA). In this case, G1 of CF Aj and 

G2 of CFAj+1 will act as HA1 j and G3, G4, and G5 of CF Aj 

will behave as HA2j. Moreover, we modify the 4-to-1 

multiplexer M3 into a simplified multiplier SM3 because one 

of its inputs is zero, where the INVERT operation. Note that 

M3 has been replaced by SM3 in the proposed one-level CCSA 

architecture. 

 
Fig2.Proposed CFA circuit [1] 

 

 
Fig3.Two serial HAs.[1] 

 

 
Fig4.Simplified multiplexer SM3.[1] 

 

C. Proposed  Hardware Architecture 

On the bases of critical path delay reduction, clock cycle 

number reduction, above, a new SCS-based Montgomery MM 

algorithm (i.e., SCS-MM-New algorithm) using one-level 

CCSA architecture is proposed to significantly reduce the 

required clock cycles for completing one MM. 

 

 The hardware architecture of SCS-MM-New algorithm, 

denoted as SCS-MM-New multiplier, are shown in Fig. ,which 

consists of one one-level CCSA architecture, two 4-to-1 

multiplexers (i.e., M1 and M2), one simplified multiplier SM3, 

one skip detector Skip_D, one zero detecto Zero_D, and six 

registers.Both M4 and M5 in Fig. are 3-bit 2-to-1 multiplexers 

and they are much smaller than k-bit multiplexers M1, M2, and 

SM3. In addition, the area of Skip_D is negligible when 

compared with that of the k-bit one-level CCSA architecture. 

The Skip_D is composed of four XOR gates, three AND gates, 

one NOR gate, and two 2-to-1 multiplexers The modulus N 

and inputs will be allowed inside the two multiplexers. This 

partial product is then allowed inside the multiplier. Those 

partial outputs then enter into configurable carry save adder, 

where the carry save addition operation is performed. They are 

stored in the flip flops temporarily. When another partial output 

is executed, then that will be stored in the flip flop. The Skip 

detector will skip the previous multiplication which is not 

required in the operation so as to reduce the number of clock 

cycles. The partial product from SM3 is allowed to the 

multiplexers M4 and M5. Later on it allows inside the flip flops 

for temporary storage, then to the skip detector. The output can 
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be obtained from semi carry. This process is repeated until the 

output is obtained. 

 
Fig 5. SCS-MM-New multiplier[1] 

 

 

 
Fig6.Skip detector Skip_D[1] 

 

The Skip_D is composed of four XOR gates, three AND gates, 

one NOR gate, and two 2-to-1 multiplexers. It first generates 

the qi+1, qi+2, and skipi+1 signal in the i th iteration 

respectively, and then selects the correct qˆ and Aˆ according to 

skipi+1. At the end of the i th iteration, qˆ, Aˆ, and skipi+1 

must be stored to FFs. In the next clock cycle of the i th 

iteration, SM3 outputs a proper x according to qˆ and Aˆ 

generated in the i th iteration. 

 
Fig7.Proposed Architecture using kogge-stone adder 

 

A. When replacing the configurable carry save adder 

with a kogge-stone adder the frequency of operation increases 

and also decreases the propagation delay. so the montgomery 

multiplication can be carry out more quickly 

 

IV. IMPLEMENTATION RESULTS 

Table 1.comparisons of different montgomery multipliers 

 
 

To evaluate the average clock cycles for completing one 

Montgomery MM, the above-mentioned multipliers, including 

SCS-MM-1 , SCS-MM-2 ,FCS-MM-1, FCS-MM-2, FCS-

MMM42 and the proposed SCS-MM-New were designed and 

specified in Verilog hardware description language. 

 

As the results shown in Table 1, the proposed SCS-MM-New 

multiplier has the shortest critical path delay and needs fewer 

clock cycles to complete one Montgomery MM,and thus 

spends the least execution time and achieves he highest 

throughput rate and needs fewer clock cycles to complete one 

Montgomery MM, and thus spends the least execution time 

and achieves the highest throughput rate. On the other hand, 

the SCS-MM-2 multiplier generally has smaller area than other 

designs. The proposed SCS-MM-New multiplier also needs 

more area than the SCS-MM-2 multiplier due to extra 

multiplexers introduced to shorten the critical path delay and 

reduce the required clock cycles. Nevertheless, the area of the 

proposed SCS-MM-New multiplier is still less than that of 

FCS-based multipliers. As a consequence, SCS-MM-New can 

obtain the smallest ATP than previous radix-2 Montgomery 

multipliers. 

 

CONCLUSION 

FCS-based multipliers maintain the input and output operands 

of the Montgomery MM in the carry-save format to escape 

from the format conversion, leading to fewer clock cycles but 

larger area than SCS-based multiplier. To enhance the 

performance of Montgomery MM while maintaining the low 

hardware complexity, this paper has modified the SCS-based 

Montgomery multiplication algorithm and proposed a low-

cost and high-performance Montgomery modular multiplier. 

The proposed multiplier used one-level CCSA architecture 

and skipped the unnecessary carry-save addition operations to 

largely reduce the critical path delay and required clock cycles 

for completing one MM operation. In this paper also proposed 

a multiplier using kogge-stone adder and it increases the 

frequency of operation and decreases the propogation delay. 

Thus the Montgomery multiplication can carry out more 

quickly. Experimental results showed that the proposed 
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approaches are indeed capable of enhancing the performance 

of Montgomery multiplier 
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