
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 102-106

102 | P a g e

MODIFIED MONTGOMERY MULTIPLICATION

WITH KOGGE-STONE ADDER FOR HIGH

THROUGHPUT
1 SNEHA RAICHEL KOSHY, 2 JUBY RAJU

1,2 ELECTRONICS AND COMMUNICATION ENGINEERING
1 MUSALIAR COLLEGE OF ENGINEERING AND TECHNOLOGY
2 MUSALIAR COLLEGE OF ENGINEERING AND TECHNOLOGY

PATHANAMTHITTA,KERALA, INDIA
1 sneharaichelkoshy@gmail.com

Abstract — This project proposes a efficient Montgomery

multiplication algorithm such that the high-performance

Montgomery modular multiplier can be implemented

accordingly. The proposed multiplier receives and outputs

the data with binary representation and uses only one-level

carry-save adder (CSA) to avoid the carry propagation at

each addition operation. This CSA is also used to perform

format conversion from the carry save format to the

binary representation, leading to a low hardware cost and

short critical path delay at the expense of extra clock

cycles for completing one modular multiplication. To

overcome the weakness, a configurable CSA (CCSA),

which could be one full-adder or two serial half-adders, is

proposed to reduce the extra clock cycles for operand

precomputation and format conversion by half. In

addition, a mechanism that can detect and skip the

unnecessary carry-save addition operations in the one-

level CCSA architecture while maintaining the short

critical path delay is developed. As a result, the extra clock

cycles for format conversion can be hidden and high

throughput can be obtained. For carry out the

Montgomery multiplication more quickly configurable

carry save adder is replaced with kogge-stone adder. and

thus increases the frequency of operation and decreases

propagation delay than previous designs.

Index Terms — Carry-save addition, Montgomery

modular multiplier, public-key cryptosystem ,kogge-stone

adder.

I. INTRODUCTION

In many public-key cryptosystems modular multiplication

(MM) with large integers is the most critical and time-

consuming operation. Therefore, numerous algorithms and

hardware implementation have been presented to carry out the

MM more quickly, and Montgomery’s algorithm is one of the

most well-known MM algorithms. Montgomery’s algorithm

determines the quotient only depending on the least significant

digit of operands and replaces the complicated division in

conventional MM with a series of shifting modular additions to

produce S = A × B × R−1 (mod N), where N is the k-bit

modulus, R−1 is the inverse of R modulo N, and R = 2^k mod

N. As a result, it can be easily implemented into VLSI circuits

to speed up the encryption/decryption process. However, the

three-operand addition in the iteration loop of Montgomery’s

algorithm requires long carry propagation for large operands

in binary representation. To solve this problem, several

approaches based on carry-save addition were proposed to

achieve a significant speedup of Montgomery MM. the

representation of input and output operands, these approaches

can be roughly divided into semi-carry-save (SCS) strategy and

full carry-save (FCS) strategy. In the SCS strategy the input

and output operands (i.e., A, B, N, and S) of the Montgomery

MM are represented in binary, but intermediate results of

shifting modular additions are kept in the carry-save format to

avoid the carry propagation. However, the format conversion

from the carry-save format of the final modular product into its

binary representation is needed at the end of each MM. This

conversion can be accomplished by an extra carry propagation

adder (CPA) or reusing the carry-save adder (CSA)

architecture iteratively. Contrary to the SCS strategy, the FCS

strategy maintains the input and output operands A, B, and S in

the carry-save format, denoted as (AS, AC), (BS, BC), and

(SS, SC), respectively, to avoid the format conversion, leading

to fewer clock cycles for completing a MM. Nevertheless, this

strategy implies that the number of operands will increase and

that more CSAs and registers for dealing with these operands

are required. Therefore, the FCS-based Montgomery modular

multipliers possibly have higher hardware complexity and

longer critical path than the SCS-based multiplier.

Kuang et al. have proposed an energy-efficient FCS based

multiplier (denoted as FCS-MMM42 multiplier) in which the

superfluous operations of the four-to-two (two-level) CSA

architecture are suppressed to reduce the energy dissipation and

enhance the throughput. However, the FCS-MMM42

multiplier still suffers from the high area complexity and long

critical path delay. Other techniques, such as parallelization,

high-radix algorithm, and systolic array design, can be

combined with the CSA architecture to further enhance the

performance of Montgomery multipliers. However, these

techniques probably cause a large increase in hardware

complexity and power/energy dissipation which is undesirable

for portable systems with constrained resources.This paper

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 102-106

103 | P a g e

aims at enhancing the performance of CSA-based Montgomery

multiplier. The proposed algorithm and hardware architecture

have the following several advantages and novel contributions

over previous designs. First, the one-level CSA is utilized to

perform not only the addition operations in the iteration loop of

Montgomery’s algorithm but also B + N and the format

conversion, leading to a very short critical path and lower

hardware cost. However, a lot of extra clock cycles are

required. the unnecessary carry-save addition operations while

keeping a short critical path delay. Therefore, the required

clock cycles for completing one MM operation can be

significantly reduced. We also proposes a multiplier using

kogge-stone adder. this will increases the frequency of

operation and also decreases the propagation delay. As a result,

the proposed Montgomery multiplier can obtain higher

throughput.

II. EXISTING ARCHITECTURES

A. CSA Based Montgomery Multiplication

Montgomery multiplication algorithm is the most efficient

algorithm available. The main advantage of Montgomery

algorithm is that it replaces the division operation with shift

operations. During two decades many alternative forms of

Montgomery algorithms are introduced. These architectures

use carry save addition. The work in [10] presented two types

of Montgomery algorithms which use Carry Save Adder

(CSA). One of the two types used four-to two CSA and the

other used five-to-CSA. They had given a brief comparison

between these two versions of Montgomery multipliers. They

had found that the multiplier using four-to-two CSA

architecture has shorter critical path than that of five-to-two

CSA multiplier. But extra storage elements and multiplexers

are required for 4-to-2 architecture which probably increases

the energy consumption. The previous work proposed a

Montgomery multiplication algorithm using pipelined carry

save addition to shorten the critical path delay of five-to-two

CSA. This method also required additional pipeline registers

and multiplexers which will increase the area. Ming Der Shieh

presented a new algorithm for high speed modular

multiplication. This new Montgomery multiplier performs

modular reduction in a pipelined fashion, so that the critical

path delay is reduced from the four-to-two to three-to-two

carry-save addition. Then it requires additional pipeline

registers to store intermediate values. All the above works were

not discussed about the energy consumption. Several previous

works,have developed techniques to reduce the power/energy

consumption of Montgomery multipliers. In [6], some latches

named glitch blockers are located at the outputs of some circuit

modules to reduce the spurious transitions and the expected

switching activities of high fan-out signals in the radix-4

scalable Montgomery multiplier. Shiann Rong Kuang tried to

reduce the energy consumption of CSAs and registers in the

CSA-based Montgomery multipliers via a new technique. They

modified the CSA based Montgomery multiplier algorithm and

as a result of this, the number of clock cycles required to

complete the multiplication is largely decreased. To achieve

further energy reduction, they have adjusted the internal

structure of barrel register full adder and then applied the gated

clock design technique. But this energy efficient algorithm

increased the total area of the design

B. SCS-Based Montgomery Multiplication

In the SCS strategy the input and output operands of the

Montgomery MM are represented in binary, but intermediate

results of shifting modular additions are kept in the carry-save

format to avoid the carry propagation. However, the format

conversion from the carry-save format of the final modular

product into its binary representation is needed at the end of

MM.This conversion can be accomplished by an extra Carry

propogation adder(CPA).A 32-bit CPA with multiplexers and

registers (denoted as CPA_FC), which adds two 32-bit inputs

and generates a 32-bit output at every clock cycle, was adopted

for the format conversion. Therefore, the 32-bit CPA_FC will

take 32 clock cycles to complete the format conversion of a

1024-bit SCS-based Montgomery multiplication. The extra

CPA_FC probably enlarges the area and the critical path of the

SCS-MM-1 multiplier.

 C. FCS-Based Montgomery Multiplication

To avoid the format conversion, FCS-based Montgomery

multiplication maintains A, B, and S in the carry save

representations (AS, AC), (BS, BC), and (SS, SC),

respectively. McIvor et al. proposed two FCS based

Montgomery multipliers, denoted as FCS-MM-1 and FCS-

MM-2 multipliers, composed of one five-to two (three-level)

and one four-to-two (two-level) CSA architecture, respectively.

The barrel register full adder (BRFA) consists of two shift

registers for storing AS and AC, a full adder (FA), and a flip-

flop (FF). For more details about BRFA, On the other hand, the

FCS-MM-2 multiplier proposed adds up BS, BC, and N into

DS and DC at the beginning of each MM. Therefore, the depth

of the CSA tree can be reduced from three to two levels.

Nevertheless, the FCS-MM-2 multiplier needs two extra 4-to-1

multiplexers addressed by Ai and qi and two more registers to

store DS and DC to reduce one level of CSA tree. Therefore,

the critical path of the FCS-MM-2 multiplier may be slightly

reduced with a significant increase in hardware area when

compared with the FCS-MM-1 multiplier. Generally speaking,

SCS-based multipliers have lower area complexity than FCS-

based Montgomery multipliers.

III. PROPOSED MONTGOMERY MULTIPLIATION

A. Critical Path Delay Reduction

The critical path delay of SCS-based multiplier can be

reduced by combining the advantages of FCS-MM-2 and SCS-

MM-2. That is pre compute D = B + N and reuse the one-level

CSA architecture to perform B+N and the format conversion.

Figure.1 shows the modified SCS-based Montgomery

multiplication(MSCS-MM) hardware architecture,

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 102-106

104 | P a g e

respectively. The Zero D circuit is used to detect whether SC is

equal to zero, which can be accomplished using one NOR

operation. The Q_L circuit decides the qi value. The carry

propagation addition operations of B + N and the format

conversion are performed by the one-level CSA architecture of

the MSCS-MM multiplier through repeatedly executing the

carry-save addition (SS, SC) = SS + SC + 0 until SC = 0.In

addition, we also pre compute Ai and qi in iteration i−1 so that

they can be used to immediately select the desired input

operand from 0, N, B, and D through the multiplexer M3 in

iteration. Therefore, the critical path delay of the MSCS-MM

multiplier can be reduced into TMUX4 + TFA. However, in

addition to performing the three-input carry-save additions k +

2 times, many extra clock cycles are required to perform B + N

and the format conversion via the one-level CSA architecture

because they must be performed once in every MM.

Furthermore, the extra clock cycles for performing B+N and

the format conversion through repeatedly executing the carry-

save addition (SS, SC) = SS+SC+0 are dependent on the

longest carry propagation chain in SS + SC. If SS = 111…1112

and SC = 000…0012, the one-level CSA architecture needs k

clock cycles to complete SS + SC.

Fig1.MSCS-MM multiplier[1

B. Clock Cycle Number Reduction

To decrease the clock cycle number, a CCSA architecture

which can perform one three-input carry-save addition or two

serial two-input carry-save additions is proposed to substitute

for the one-level CSA architecture. Two cells of the one-level

CSA architecture in Figure.2each cell is one conventional FA

which can perform the three-input carry-save addition. Two

cells of the proposed configurable FA (CFA) circuit. If α = 1,

CFA is one FA and can perform one three-input carry-save

addition (denoted as 1F_CSA). Otherwise, it is two half-adders

(HAs) and can perform two serial two-input carry-save

additions (denoted as 2H_CSA). In this case, G1 of CF Aj and

G2 of CFAj+1 will act as HA1 j and G3, G4, and G5 of CF Aj

will behave as HA2j. Moreover, we modify the 4-to-1

multiplexer M3 into a simplified multiplier SM3 because one

of its inputs is zero, where the INVERT operation. Note that

M3 has been replaced by SM3 in the proposed one-level CCSA

architecture.

Fig2.Proposed CFA circuit [1]

Fig3.Two serial HAs.[1]

Fig4.Simplified multiplexer SM3.[1]

C. Proposed Hardware Architecture

On the bases of critical path delay reduction, clock cycle

number reduction, above, a new SCS-based Montgomery MM

algorithm (i.e., SCS-MM-New algorithm) using one-level

CCSA architecture is proposed to significantly reduce the

required clock cycles for completing one MM.

 The hardware architecture of SCS-MM-New algorithm,

denoted as SCS-MM-New multiplier, are shown in Fig. ,which

consists of one one-level CCSA architecture, two 4-to-1

multiplexers (i.e., M1 and M2), one simplified multiplier SM3,

one skip detector Skip_D, one zero detecto Zero_D, and six

registers.Both M4 and M5 in Fig. are 3-bit 2-to-1 multiplexers

and they are much smaller than k-bit multiplexers M1, M2, and

SM3. In addition, the area of Skip_D is negligible when

compared with that of the k-bit one-level CCSA architecture.

The Skip_D is composed of four XOR gates, three AND gates,

one NOR gate, and two 2-to-1 multiplexers The modulus N

and inputs will be allowed inside the two multiplexers. This

partial product is then allowed inside the multiplier. Those

partial outputs then enter into configurable carry save adder,

where the carry save addition operation is performed. They are

stored in the flip flops temporarily. When another partial output

is executed, then that will be stored in the flip flop. The Skip

detector will skip the previous multiplication which is not

required in the operation so as to reduce the number of clock

cycles. The partial product from SM3 is allowed to the

multiplexers M4 and M5. Later on it allows inside the flip flops

for temporary storage, then to the skip detector. The output can

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 102-106

105 | P a g e

be obtained from semi carry. This process is repeated until the

output is obtained.

Fig 5. SCS-MM-New multiplier[1]

Fig6.Skip detector Skip_D[1]

The Skip_D is composed of four XOR gates, three AND gates,

one NOR gate, and two 2-to-1 multiplexers. It first generates

the qi+1, qi+2, and skipi+1 signal in the i th iteration

respectively, and then selects the correct qˆ and Aˆ according to

skipi+1. At the end of the i th iteration, qˆ, Aˆ, and skipi+1

must be stored to FFs. In the next clock cycle of the i th

iteration, SM3 outputs a proper x according to qˆ and Aˆ

generated in the i th iteration.

Fig7.Proposed Architecture using kogge-stone adder

A. When replacing the configurable carry save adder

with a kogge-stone adder the frequency of operation increases

and also decreases the propagation delay. so the montgomery

multiplication can be carry out more quickly

IV. IMPLEMENTATION RESULTS

Table 1.comparisons of different montgomery multipliers

To evaluate the average clock cycles for completing one

Montgomery MM, the above-mentioned multipliers, including

SCS-MM-1 , SCS-MM-2 ,FCS-MM-1, FCS-MM-2, FCS-

MMM42 and the proposed SCS-MM-New were designed and

specified in Verilog hardware description language.

As the results shown in Table 1, the proposed SCS-MM-New

multiplier has the shortest critical path delay and needs fewer

clock cycles to complete one Montgomery MM,and thus

spends the least execution time and achieves he highest

throughput rate and needs fewer clock cycles to complete one

Montgomery MM, and thus spends the least execution time

and achieves the highest throughput rate. On the other hand,

the SCS-MM-2 multiplier generally has smaller area than other

designs. The proposed SCS-MM-New multiplier also needs

more area than the SCS-MM-2 multiplier due to extra

multiplexers introduced to shorten the critical path delay and

reduce the required clock cycles. Nevertheless, the area of the

proposed SCS-MM-New multiplier is still less than that of

FCS-based multipliers. As a consequence, SCS-MM-New can

obtain the smallest ATP than previous radix-2 Montgomery

multipliers.

CONCLUSION

FCS-based multipliers maintain the input and output operands

of the Montgomery MM in the carry-save format to escape

from the format conversion, leading to fewer clock cycles but

larger area than SCS-based multiplier. To enhance the

performance of Montgomery MM while maintaining the low

hardware complexity, this paper has modified the SCS-based

Montgomery multiplication algorithm and proposed a low-

cost and high-performance Montgomery modular multiplier.

The proposed multiplier used one-level CCSA architecture

and skipped the unnecessary carry-save addition operations to

largely reduce the critical path delay and required clock cycles

for completing one MM operation. In this paper also proposed

a multiplier using kogge-stone adder and it increases the

frequency of operation and decreases the propogation delay.

Thus the Montgomery multiplication can carry out more

quickly. Experimental results showed that the proposed

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 3 (May-June, 2017), PP. 102-106

106 | P a g e

approaches are indeed capable of enhancing the performance

of Montgomery multiplier

REFERENCES

[1] Shiann-Rong Kuang, Kun-Yi Wu, and Ren-Yao Lu“Low-Cost

High-Performance VLSI Architecture for Montgomery Modular

Multiplication” IEEE transactions on very large scale A. F.

Tenca integration (vlsi) systems, 1063-8210,February 15,2015

[2] H. Zhengbing, R. M. Al Shboul, and V. P. Shirochin, “An

efficient architecture of 1024-bits cryptoprocessor for RSA

cryptosystem based on modified Montgomery’s algorithm,” in

Proc. 4th IEEE Int. Workshop Intell. Data Acquisition Adv.

Comput. Syst., pp. 643–646,Sep.2007

[3] J. Han, S. Wang, W. Huang, Z. Yu, and X. Zeng,

“Parallelization of radix-2 Montgomery multiplication on

multicore platform,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 21, no. 12, pp. 2325–2330,Dec.2013

multipliers,”IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 19, no. 7,pp. 1136–1146,July 2011

[4] Y. S. Kim, W. S. Kang, and J. R. Choi, “Asynchronous

implementation of 1024-bit modular processor for RSA

cryptosystem,” in Proc. 2nd IEEE Asia-Pacific Conf. ASIC,

Aug. 2000, pp. 187–190.

[5] .J. C. Neto, , and W. V. Ruggiero, “A parallel k-partition method

to perform Montgomery multiplication,” in Proc. IEEE Int.

Conf. Appl.-Specific Syst., Archit., Processors, Sep. 2011, pp.

251–254,Sep.2011

[6] D. Bayhan, S. B. Ors, and G. Saldamli, “Analyzing and

comparing the Montgomery multiplication algorithms for their

power consumption,” in Proc. Int. Conf. Comput. Eng. Syst.,

Nov. 2010, pp. 257–261.

[7] Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang, “An efficient

CSA architecture for Montgomery modular multiplication,”

Microprocessors Microsyst., vol. 31, no. 7, pp. 456–459, Nov.

2007.

[8] C. McIvor, M. McLoone, and J. V. McCanny, “Modified

Montgomery modular multiplication and RSA exponentiation

techniques,” IEE Proc.-Comput. Digit. Techn., vol. 151, no. 6,

pp. 402–408, Nov. 2004.

[9] JS.-R. Kuang, J.-P. Wang, K.-C. Chang, and H.-W. Hsu,

“Energy-efficient high-throughput Montgomery modular

multipliers for RSA cryptosystems,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 21, no. 11,pp. 1999–2009, Nov.

2013. 12..

