
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 238-240

238 | P a g e

IMPROVED APRIORI ALGORITHM FOR

ASSOCIATION RULES
Shikha Bhardwaj1, Preeti Chhikara2, Satender Vinayak2, Nishant Pai2, Kuldeep Meena2

1Faculty, Department of Computer Science & Engineering,

Bharati Vidyapeeth’s College of Engineering, New Delhi
2Final Year Students, Department of Computer Science & Engineering,

Bharati Vidyapeeth’s College of Engineering, New Delhi

shikha.bhardwaj@bharatividyapeeth.edu

Abstract— Association rules are the main techniques to

determine the frequent item set in data mining. Apriori

algorithm is the classic algorithm of association rules, which

enumerate all of the frequent item sets. If database is large, it

takes too much time to scan the database. The improved

algorithm is verified, the results show that the improved

algorithm is reasonable and effective, and can extract more

valuable information.

Keywords- Apriori, Improved Apriori, Association Rule,

Data Mining

I. INTRODUCTION

Data mining also known as Knowledge Discovery in

Database (KDD). The purpose of data mining is to abstract

interesting knowledge from the large database.

Apriori is a classic algorithm for learning association

rules. Apriori is designed to operate on databases containing

transactions. The Apriori algorithm is used for association

rule mining. Apriori is the best-known basic algorithm for

mining frequent item sets in a set of transactions. Apriori

algorithm represents the candidate generation approach. It

generates candidate (k+1) item sets based on frequent k-item

sets.

The Apriori-based algorithms finds frequent item sets

based upon an iterative bottom-up approach to generate

candidate item sets. Apriori is a Breadth First Search

Algorithm (BFS). Now, a method to obtain frequent item-set

by using a different approach to classical Apriori algorithm,

by making a matrix of given example by considering row as

transactions and columns as items. By reducing rows and

columns from matrix, we will finally produce a frequent

item set without scanning database repeatedly. So this

method will increase the efficiency and reduce the time to

generate the frequent item-sets.

In Apriori, each set of data has a number of items and

is called a transaction. The output of Apriori is sets of rules

that tell us how often items are contained in sets of data.

Frequent item set mining and association rule induction are

powerful methods for so-called market basket analysis,

which aims at finding regularities in the shopping behavior

of customers of supermarkets, mail-order companies, online

shops etc.This algorithm only needs to scan the database one

time and also greatly reduces the number of candidates of

frequent item sets.

II. RELATED WORK

In year 2010, Yongge Shi, Yiqun Zhou have purposed

some association rules to increase the efficiency of the

Apriori algorithm which can improve the speed of data

mining effectively, enhance the ability of ADSL line

quality’s analysis and solving[1].

In year 2010, Libing Wu, KuiGong, Fuliang Guo,

XiaohuaGe have given a C# code which achieves the

improved algorithm confirmed by many experiments, this

algorithm is better than traditional algorithms in time

consumed and reduces the frequency with which we scan

the database and reduce the unnecessary duplication of

effort[2].

Rehab H. Alwa and Anasuya V. Patil (2013) described

a novel approach to improve the Apriori algorithm through

the creation of Matrix‐ File [3].

Mohammed Al‐ Maolegi and Bassam Arkok (2013)

indicated the limitation of the original Apriori algorithm of

wasting time for scanning the whole database searching on

the frequent item‐sets, and presented an improvement on

Apriori by reducing that wasted time depending on scanning

only some transactions[4].

III. METHODS TO IMPROVE APRIORI EFFICIENCY

 Hash-based item set counting: A k-item set whose

corresponding hashing bucket count is below the threshold

cannot be frequent.

 Transaction reduction: A transaction that does not contain

any frequent k-item set is useless in subsequent scans.

 Partitioning: Any item set that is potentially frequent in

DB must be frequent in at least one of the partitions of

DB.

 Sampling: mining on a subset of given data, lower support

threshold + a method to determine the completeness.

 Dynamic itemset counting: add new candidate item sets

only when all of their subsets are estimated to be frequent.

IV. PSEUDO CODE

A. Apriori Algorithm

The name of algorithm is based on the fact that the

algorithm uses prior knowledge of frequent item set

properties. It uses a breadth-first search strategy for counting

the support of item sets. It also uses a "bottom up" approach,

where frequent subsets are extended one item at a time (a

step known as candidate generation) and groups of

candidates are tested against the data. Apriori algorithm is

the original algorithm of Boolean Association rules of

mining frequent item sets, raised by R.

Apriori first scans the database and searches for frequent

item sets of size 1 by accumulating the count for each item

and collecting those that satisfy the minimum support

requirement.

 Join Step: Ck is generated by joining Lk-1with itself

 Prune Step: Any (k-1)-item set that is not frequent

cannot be a subset of a frequent k-item set

 Pseudo-code:

mailto:inishantpai_2005@yahoo.com

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 238-240

239 | P a g e

Ck: Candidate item set of size k

Lk: frequent item set of size k

L1= {frequent items};

for(k= 1; Lk!=∅; k++) do begin

Ck+1= candidates generated from Lk;

for each transaction t in database do

increment the count of all candidates in Ck+1that are

contained in t

Lk+1= candidates in Ck+1with min_support

end
return CkLk;

Our hash based Apriori implementation, uses a data

structure that directly represents a hash table. This algorithm

proposes overcoming some of the weaknesses of the Apriori

algorithm by reducing the number of candidate k-itemsets.

In particular the 2-itemsets, since that is the key to

improving performance. This algorithm uses a hash based

technique to reduce the number of candidate itemsets in the

first pass. It is claimed that the number of itemsets in C2

generated using hashing can be reduced, so that the scan

required and efficiency become better.

For example, when scanning each transaction in the

database to generate the frequent 1-itemsets,L1, from the

candidate 1-itemsets in C1, we can generate all of the 2-

itemsets for each transaction, hash map them into the

different buckets of a hash table structure, and increase the

corresponding bucket counts. A 2-itemset whose

corresponding bucket count in the hash table is below the

support threshold cannot be frequent and thus should be

removed from the candidate set. Such a hash based Apriori

may substantially reduce the number of the candidate k-

itemsets examined.

Steps:-

1. Scan all the transaction. Create possible 2-itemsets.

2. Let the Hash table of size 6.

3. For each bucket assign an candidate pairs using the

ASCII values of the itemsets.

4. Each bucket has a count, which is increased by 1

each item, an item set is hashed to that bucket.

5. If the bucket count is equal or above the minimum

support count, the bit vector is set to 1. Otherwise it

is set to 0.

6. The candidate pairs that hash to locations where the

bit vector bit is not set are removed.

7. Modify the transaction database to include only

these candidate pairs.

In this, each transaction counting all the 1-itemsets. At

the same time all the possible 2-itemsets in the current

transaction are hashed to a hash table. It uses a hash table to

reduce the number if candidate itemsets. When the support

count is established the steps the frequent itemsets. It

generates the candidate itemsets as like the Apriori

algorithm.

V. METHODOLOGY

To improve the performance of Apriori algorithm we

are using the Hashing Data structure. We report

experimental results on accident dataset. We have taken

accident database as a Text file. In this data set, the average

maximal potentially frequent itemset size is set to 14, while

the number of transactions in the dataset is set to 25. Apriori

and Hash based Apriori were executed for different

minimum support level to generate the candidate 2-

itemsets. The performance of Apriori and Hash based

Apriori algorithms are evaluated for different minimum

support levels.

VI. SIMULATION RESULTS

The following table presents the test results of the

implementations of Apriori and the Hash based Apriori on

the dataset of supermarket for different minimum support

level.

Table 1. Memory Usage of Apriori and Hash Based

Apriori

Miniumm

support level

Size of candidate 2-itemsets

Apriori Hash Based

Apriori

1 126 41

2 68 25

3 35 19

4 35 15

5 18 6

6 11 6

As a result, when comparing with Apriori algorithm the size

of candidate 2 Itemsets of Hash based Apriori algorithm is

reduced. For minimum support level of 1, the size of

candidate 2-Itemsets is 126 while using Apriori. But it is

reduced to 41 while using Hash based Apriori.

Fig. 3. Graphical Comparison of Performance of Apriori

and Hash Based Apriori

In these graphs, we see that the memory usage of candidate

2-itemset for both algorithms increases exponentially as the

minimum support is reduced. Applying Hashing data

structure in Apriori reduce the size of candidate 2-itemsets

when comparing with Apriori.

VII. CONCLUSION

Determining frequent objects is one of the most important

fields in data mining. This algorithm can achieve a smaller

memory usage than the Apriori algorithm. It is well known

that the way candidates are defined has great effect on

running time and memory need. Hash based Apriori is most

efficient for generating the frequent itemset than Apriori.

VIII. ACKNOWLEDGMENT

The authors would like to thank everyone, just everyone!

REFERENCES

[1] J. Han and M. Kamber, Conception and Technology of

Data Mining, Beijing: China Machine Press, 2007.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 238-240

240 | P a g e

[2] S. Rao, R. Gupta, “Implementing Improved Algorithm

Over APRIORI Data Mining Association Rule

Algorithm”, International Journal of Computer

Science And Technology, pp. 489-493, Mar. 2012

[3] “Data Mining - concepts and techniques” by Jiawei

Han and MichelineKamber

[4] “Introduction to data mining and its applications” S.

Sumathi, S. N. Sivanandam.

[5] P. Keleher, A. L. Cox, and W. Zwaenepoel, ―Lazy

Release Consistency for Software Distributed Shared

Memory‖. In Proc. of the 19th Annual Int‘l Symposium

on Computer Architecture,1992, pp. 13-21.

[6] J. Han and M. Kamber,"Data mining concepts and

techniques‖, Elsevier, 2nd Edition. Chapter 5.

[7] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri,

―Webdocs: a real-life huge transactional dataset‖. In

Jr. et. al.

