
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 28-32

28 | P a g e

EFFICIENT DATA HIDING SYSTEM USING LZW

CRYPTOGRAPHY AND GIF IMAGE

STEGANOGRAPHY
Intisar Majeed Saleh, Hanaa Hameed Merzah

AL. Rafidain University College

Baghdad, Iraq

Intisar_alyssiri@yahoo.com, Hanamerza2007@gmail.com

Abstract— The combination of steganography and

cryptography is considered as one of the best security methods

used for message protection, due to this reason, in this paper, a

data hiding system that is based on image steganography and

cryptography is proposed to secure data transfer between the

source and destination. Animated GIF image is chosen as a

carrier file format for the steganography due to a wide use in web

pages and a LSB (Least Significant Bits) algorithm is employed to

hide the message inside the colors of the pixels of an animated

GIF image frames. To increase the security of hiding, each frame

of GIF image is converted to 256 color BMP image and the

palette of them is sorted and reassign each pixels to its new index,

furthermore, the message is encrypted by LZW (Lempel _

Ziv_Welch) compression algorithm before being hidden in the

image frames. The proposed system was evaluated for

effectiveness and the result shows that, the encryption and

decryption methods used for developing the system make the

security of the proposed system more efficient in securing data

from unauthorized users. The system is therefore, recommended

to be used by the Internet users for establishing a more secure

communication.

Keywords:- Steganography, LSB, Animated GIF, LZW.

I. INTRODUCTION

 The cryptography and steganography techniques occupies a

distinctive place in the area of security as they help to solve

the problem of transmission of confidential information over

the network in the form of a more secure against violations of

unauthorized persons . Cryptography is the art and science of

creating nonreadable data or cipher so that only intended

person is only able to read the data[1], Unfortunately it is

sometimes not enough to keep the contents of a message

secret, it may also be necessary to keep the existence of the

message secret. The technique used to implement this, is

called steganography.Steganography comes from the Greek

words Steganós (Covered) and Graptos (Writing), it usually

refers to information or a file that has been concealed inside a

digital Picture, Video, Text or Audio file[2,3]. For this reason,

in this paper, we focus on the combination of steganography

and cryptography to protect the private information within the

digital image ,and more specifically on the GIF image which

being used widely on the Internet. When information is hidden

inside a carrier file, the data is encrypted with LZW

compression method.

 The general scheme for embedding data is depicted in

Figure 1. A message is embedded in a file by the stegosystem

encoder, which has as inputs the original cover, the secret

message and a key. The resulting stego object is then

transmitted over a communication channel to the recipient

where the stegosystem decoder using the same key processes it

and the message can be read.

Fig. 1. A General Steganographic Model

The steganographic process can be represented using

formulas. The stego object is given by:

 I' = f(I,m,k)

where: I’ is the stego object, I is the original object, m is the

message and k is the key that the two parties share. The stego

object may be subject to many distortions, which can be

represented as a noise process n:

 I'' = I'+n(I')

At the decoder we wish to extract the signal m, so we can

consider the unwanted signal to be I. The embedded signal

should resist common signal distortions as those depicted in

Figure 2. Two kinds of compression exist: lossy and lossless.

Both methods save storage space but have different results.

Lossless compression permits exact reconstruction of the

original message; therefore it is preferred when the original

information must remain intact. Such compression schemes

are the images saved as GIF (Graphic Interchange Format).

Lossy compression, on the other hand, does not maintain the

original’s integrity. Such compression scheme is an image

saved as JPEG (Joint Photographic Experts Group). The JPEG

formats provide close approximations to high-quality digital

photos but not an exact duplicate.

Fig. 2: common signal distortions over the transmission

channel

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 28-32

29 | P a g e

+-----------------------+

| +-------------------+ |

| | GIF Signature | |

| +-------------------+ |

| +-------------------+ |

| | Screen Descriptor | |

| +-------------------+ |

| +-------------------+ |

| | Global Color Map | |

| +-------------------+ |

.

| +-------------------+ | ---+

| | Image Descriptor | | |

| +-------------------+ | |

| +-------------------+ | |

| | Local Color Map | | |-Repeated 1 ton

times

| +-------------------+ | |

| +-------------------+ | |

| | Raster Data | | |

| +-------------------+ | ---+

.

|- GIF Terminator -|

+-----------------------+

Geometric distortions are specific to images and video and

include operations such as: rotation, translation, scaling.

Cropping is another type of geometric distortion that leads to

irretrievable loss of data. The signal can be processed in many

ways, including resampling, analog-to-digital and digital-to-

analog conversions, requantization, recompression, printing,

rescanning, copying, filtering and so on. All those processes

introduce additional degradation into the object that a

steganographic scheme must withstand.[4]

II. LEST SIGNIFICANT BIT (LSB)

Least significant bit (LSB) insertion is a common, simple

approach to embedding information in a cover image [5]. In

this method, we can take the binary representation of the

hidden_data and overwrite the LSB of each byte within the

cover_image. If we are using 24-bit color, the amount of

change will be minimal and indiscernible to the human eye. As

an example, suppose that we have three adjacent pixels (nine

bytes) with the following RGB encoding:

10010101 00001101 11001001

10010110 00001111 11001010

10011111 00010000 11001011

Now suppose we want to "hide" the following 9 bits of data

(the hidden data is usually compressed prior to being hidden):

101101101. If we overlay thes 9 bits over the LSB of the 9

bytes above, we get the following (where bits in bold have

been changed):

10010101 00001100 11001001

10010111 00001110 11001011

10011111 00010000 11001011

Note that we have successfully hidden 9 bits but at a cost of

only changing 4, or roughly 50%, of the LSBs. Similar

methods can be applied to 8-bit palette based images (like GIF

images) but the changes, as the reader might imagine, are

more dramatic[6]. This is alleviated in this paper by sorting the

palette and reassigns each pixel to the index of its color in the

new palette before the embedding process.

III. LEMPEL-ZIV-WELCH (LZW)

LZW is a universal lossless data compression algorithm

created by Abraham Lempel, Jacob Ziv, and Terry Welch. It

was published by Welch in 1984 as an improved

implementation of the LZ78 algorithm published by Lempel

and Ziv in 1978. The algorithm is designed to be fast to

implement but is not usually optimal because it performs only

limited analysis of the data.

The compressor algorithm builds a string translation table

from the text being compressed. The string translation table

maps fixed-length codes (usually 12-bit) to strings. The string

table is initialized with all single-character strings (256 entries

in the case of 8-bit characters). As the compressor character-

serially examines the text, it stores every unique two-character

string into the table as a code/character concatenation, with the

code mapping to the corresponding first character. As each

two-character string is stored, the first character is sent to the

output. Whenever a previously-encountered string is read from

the input, the longest such previously-encountered string is

determined, and then the code for this string concatenated with

the extension character (the next character in the input) is

stored in the table. The code for this longest previously-

encountered string is output and the extension character is

used as the beginning of the next word.

The decompressor algorithm only requires the compressed

text as an input, since it can build an identical string table from

the compressed text as it is recreating the original text.

However, an abnormal case shows up whenever the sequence

character/string/character/string/character (with the same

character for each character and string for each string) is

encountered in the input and character/string is already stored

in the string table. When the decompressor reads the code for

character/string/character in the input, it cannot resolve it

because it has not yet stored this code in its table. This special

case can be dealt with because the decompressor knows that

the extension character is the previously-encountered

character.

A. Compressor Algorithm

Build a table and store all possible strings in it

STRING = get input character

WHILE there are still input characters DO

 CHARACTER = get input character

 IF STRING+CHARACTER is in the string table then

 STRING = STRING+character

 ELSE

 output the code for STRING

 add STRING+CHARACTER to the string table

 STRING = CHARACTER

 END of IF

END of WHILE

output the code for STRING

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 28-32

30 | P a g e

B. Decompressor Algorithm

Build a table and store all possible strings in it

Read OLD_CODE

OLD_CODE = get translation of OLD_CODE

output OLD_CODE

CHARACTER = OLD_CODE

WHILE there are still input characters DO

 Read NEW_CODE

 IF NEW_CODE is not in the string table THEN

 STRING = OLD_CODE

 STRING = STRING+CHARACTER

 ELSE

 STRING = get translation of NEW_CODE

 END of IF

 output STRING

 CHARACTER = first character in STRING

 add OLD_CODE + CHARACTER to the string table

 OLD_CODE = get translation of NEW_CODE

END of WHILE

IV. GRAPHIC INTERCHANGE FORMAT (GIF)

 The Graphics Interchange Format (GIF) is a bitmap

image format that was introduced by CompuServe in 1987 and

has since come into widespread usage on the World Wide

Web due to its wide support and portability. The format

supports up to 8 bits per pixel, allowing a single image to

reference a palette of up to 256 distinct colors chosen from the

24-bit RGB color space. It also supports animations and

allows a separate palette of 256 colors for each frame. GIF

images are compressed using the Lempel-Ziv-Welch (LZW)

lossless data compression technique to reduce the file size

without degrading the visual quality.

A. General File Format

 The GIF Signature identifies the data following as a

valid GIF image stream. It consists of the following

six characters. The first three characters are G I F and

the last three characters are a version number for this

particular GIF definition.

 The Screen Descriptor describes the overall

parameters for all GIF images following. This

information is stored in a series of 8-bit bytes as

described below.

 The Global Color Map is optional but recommended

for images where accurate color rendition is desired.

The existence of this color map is indicated in the 'M'

field of byte 5 of the Screen Descriptor. The number

of color map entries following a Screen Descriptor is

equal to 2**(# bits per pixel), where each entry

consists of three byte values representing the relative

intensities of red, green and blue respectively. The

structure of the Color Map block is:

 The Image Descriptor defines the actual placement

and extents of the following image within the space

defined in the Screen Descriptor. Also defined are

flags to indicate the presence of a local color lookup

map, and to define the pixel display sequence. The

information stored in image descriptor is:

 A Local Color Map is optional. If the 'M' bit of byte

 10 of the Image Descriptor is set, then a color map

follows the Image Descriptor that applies only to the

following image. At the end of the image, the color

map will revert to that defined after the Screen

Descriptor. Note that the 'pixel' field of byte 10 of the

Image Descriptor is used only if a Local Color Map is

indicated. This defines the parameters not only for the

image pixel size, but determines the number of color

map entries that follow. The bits per pixel value will

also revert to the value specified in the Screen

Descriptor when processing of the image is complete.

 Raster Data: The format of the actual image is

defined as the series of pixel color index values that

 bits

 7 6 5 4 3 2 1 0 Byte #
 +------------------+

 | | 1

 +-Screen Width -+ Raster width in pixels (LSB first)

 | | 2

 +-----------------+

 | | 3
 +-Screen Height-+ Raster height in pixels (LSB first)

 | | 4

 +-+------+-+------+ M = 1, Global color map follows Descriptor
 |M| cr |0|pixe l | 5 cr+1 = # bits of color resolution

 +-+-----+-+-----+ pixel+1 = # bits/pixel in image

 | background | 6 background=Color index of screen background
 +-----------------+ (color is defined from the Global color

 |0 0 0 0 0 0 0 0 | 7 map or default map if none specified)

 +-----------------+

 bits
 7 6 5 4 3 2 1 0 Byte #

 +---------------+

 | red intensity | 1 Red value for color index 0
 +---------------+

 |green intensity| 2 Green value for color index 0

 +---------------+
 | blue intensity| 3 Blue value for color index 0

 +---------------+

 | red intensity | 4 Red value for color index 1
 +---------------+

 |green intensity| 5 Green value for color index 1

 +---------------+
 | blue intensity| 6 Blue value for color index 1

 +---------------+

 : : (Continues for remaining colors)

 bits

 7 6 5 4 3 2 1 0 Byte #
 +---------------+

 |0 0 1 0 1 1 0 0| 1 ',' - Image separator character

 +---------------+
 | | 2 Start of image in pixels from the

 +- Image Left -+ left side of the screen (LSB first)

 | | 3
 +---------------+

 | | 4

 +- Image Top -+ Start of image in pixels from the
 | | 5 top of the screen (LSB first)

 +---------------+

 | | 6
 +- Image Width -+ Width of the image in pixels (LSB first)

 | | 7

 +---------------+
 | | 8

 +- Image Height-+ Height of the image in pixels (LSB first)

 | | 9
 +-+-+-+-+-+-----+ M=0 - Use global color map, ignore 'pixel'

 |M|I|0|0|0|pixel| 10 M=1 - Local color map follows, use 'pixel'

 +-+-+-+-+-+-----+ I=0 - Image formatted in Sequential order
 I=1 - Image formatted in Interlaced order

 pixel+1 - # bits per pixel for this image

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 28-32

31 | P a g e

make up the image. The image pixel values are

processed as a series of color indices which map into

the existing color map. The resulting color value from

the map is what is actually displayed. This series of

pixel indices, the number of which is equal to image-

width*image-height pixels, are passed to the GIF

image data stream one value per pixel, compressed

and packaged according to a version of the LZW

compression algorithm.

V. THE WORKING SYSTEM ALGORITHMS

a) The Hiding Algorithm

b) The Extracting Algorithm

VI. PRACTICAL IMPLEMENTATION

 We have completed a project using this technique using

Visual Basic 6.0. Various animated GIF images are used as

source image and the results are noted. Let us see one of the

results here:

a) Cover Image Frames

Frame1 Frame2

Frame3 Frame4

Frame5

Frame6

Frame7

Frame8

b) The Text Message

 You give but little when you give of your possessions. It is

when you give of yourself that you truly give. For what are

your possessions but things you keep and guard for fear you

may need them tomorrow? And tomorrow, what shall

tomorrow bring to the over prudent dog burying bones in the

trackless sand as he follows the pilgrims to the holy city? And

what is fear of need but need itself? Is not dread of thirst when

your well is full, the thirst that is unquenchable?

 There are those who give little of the much which they

have--and they give it for recognition and their hidden desire

makes their gifts unwholesome. And there are those who have

little and give it all. These are the believers in life and the

bounty of life, and their coffer is never empty. There are those

who give with joy, and that joy is their reward. And there are

those who give with pain, and that pain is their baptism.

 And there are those who give and know not pain in giving,

nor do they seek joy, nor give with mindfulness of virtue;

They give as in yonder valley the myrtle breathes its fragrance

into space. Through the hands of such as these God speaks,

and from behind their eyes He smiles upon the earth.

 It is well to give when asked, but it is better to give unasked,

through understanding;

Frame1

Frame2

 Frame3

Frame4

Frame5 Frame6

Frame7

Frame8

nd to the open-handed the search for one who shall

receive is joy greater than giving. And is there aught you

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 28-32

32 | P a g e

would withhold? All you have shall some day be given;

therefore give now, that the season of giving may be yours and

not your inheritors'

c) Stego-Image Frames

d) The Palette

Before Sorting

After Sorting

VII. CONCLUSIONS

1- The processing of compressed a text message by using

LZW compression method considered as an encryption

method, therefore the detection of the hidden message become

more complex.

2- Hide the text in all frames of the animated image and the

animation property of the image make the observation of the

hidden text very difficult.

3- The maximum size of the embedded text message could be

very huge depend on the LZW code of the text and number of

frames in the image.

4- The lossless compression method used in the image and in

the embedded text result to extract the text without any

changes in the message.

REFERENCES

[1] Atul Kahate (2009), Cryptography and Network Security,

2nd edition, McGraw-Hill.
[2] Mohamed Elsading Eltahir, Laiha Mat, B. B Zaidan and A.

A. Zaidan," High Rate Video Streaming Steganography"

,International Conference on Information Management and

Engineering(ICIME09) Session 10,P.P 550-

553,2009.(Conference proceding).

[3] Fazida Othman, Miss Laiha. Maktom, A.Y.TAQA, B. B

Zaidan, A. A Zaidan,"An Extensive Empirical Study for the

impact of Increasing Data Hidden on the Images

Texture",Internatioal Conference on future Computer and

Communication(ICFCC 09),Session 7,P.P 477-

481,2009(Confernce proceding).

[4] Richard Popa "An Analysis of Steganographic

Techniques".

[5] Johnson, N.F. & Jajodia, S., "Exploring Steganography:

Seeing the Unseen",Computer Journal,February 1998.

[6] Murshed, Md. M. "Steganography using LSB hiding

"Upper lowa University Fayette, lowa, USA.

[7] "Graphics Interchange format, Version 87a". 15 June

1987.Retrieved13 October 2012.

