EFFECTS OF OPENINGS IN CONCRETE

DINDAR MOHAMMED SALEEM SADEEQ Duhok, Iraq

Abstract— The results of a time history study for tall concrete buildings are presented, addressing the effects of openings in concrete shear walls under near fault earthquake ground motions.

A ten-story building was modeled with three different types of lateral resisting systems: complete shear walls, shear walls with square opening in the center and shear wall with opening at right end side. Studied models were analyzed with nonlinear software under the two mentioned records.

The purpose of this paper is to review the advances that have been made in the design of monolithic and precast reinforced concrete walls, both with and without openings, subject to eccentrically applied axial loads. Using the results of previous experimental studies, a database was assembled to enable statistical assessment of the reliability of existing design models. Several design aspects are highlighted, including the size and position of openings, and the roles of boundary conditions and geometric characteristics. In addition, the performance of fiberreinforced polymers in strengthening wall openings is discussed.

Over- all it is found that design codes provide more conservative results than alternative design models that have been proposed in recent studies. Research into the strengthening of walls with openings is still in its early stages, and further studies in this area are needed. The paper therefore concludes by highlighting some areas where new investigations could provide important insights into the structural behaviour of strengthened elements.

Index Terms— Concrete shear wall, Openings, Displacement time history and basal shear, Earthquake records.

I. INTRODUCTION

The shear wall is a structural element designed to resist lateral forces. For slender walls where the bending deformation is higher, shear wall resists the loads due to cantilever action; and for short walls where the shear deformation is higher, it resists the loads due to truss action. These walls are more important in seismically active zones because during earthquakes shear forces on the structures increase. When a building has a story without shear walls, or with poorly placed shear walls, it is known as a soft story building.

This structural element can provide adequate strength and stiffness to control lateral displacements. Shear walls are usually located regularly in plan and in elevation, to minimize torsion effects in each floor due to possible offset between center of mass and shear center.

Wall strength depends on: strength of the sheathing; the type, size, and spacing of the fasteners; the panel aspect ratio (ratio of length to width of shear panel); and the strength of the

studs. Shear walls that are perforated with openings are called coupled walls. These walls act as isolated cantilevered walls connected by coupling beams (also called spandrel beams or lintels) designed for bending and shear effects.

Openings are used as architectural needs to have window or doors; besides, engineers want to design buildings without shear lag under negative shear.

Many researchers have investigated the effect of opening in concrete shear wall. Elnashahi and Pinho (1998) tested a coupled shear wall at real scale. In their work, the load capacity and stress distribution around the openings were analyzed by conducting three-dimensional (3D) nonlinear pushover analyses on typical shear wall dominant building structures.

They investigated the pattern of cracks, and the connection between wall and slab; the research showed significant contribution for increasing the global lateral resistance, by the interaction between wall-to-wall and wall-to-slab.

Saheb and Desayi (1990) considered U shaped shear wall with rectangular opening in the web, under shaking table tests. To investigate the behavior of the shear walls, and to assess the validity of the numerical tool, a 3-D refined non-linear analysis was conducted. In that investigation, it was shown that the refined model is able to describe the global behavior of the structure and qualitatively the distribution of damage at the base of the specimen.

The resistant structural skeletons of tall buildings subjected to horizontal forces due to wind (or earthquake) often have double symmetry but are open sections and should therefore be analyzed including the effects of torsion-bending theory of Vlasov (1961).

Two computer programs have been developed in Fortran language by Barros (1999) for the consideration of torsionbending in the analysis of tall buildings, using the continuous medium technique in which the discretized system of horizontal links (bracing slabs and beams) at the various floors are replaced by a continuous media of equivalent stiffness along the height. The programs determine the generalized displacements and the generalized stress resultants in the structural members, in tall buildings of tubular skeleton (tube within a tube) with peripheral resisting elements and inner core, under torsion-bending.

Hui and Bing (2003) have modeled a coupled shear wall under lateral load. Experimental analysis has shown a considerable increase in lateral strength with diagonal tensile tie and compressive strut. In another research, two concrete shear walls with opening have been assessed by Doh and Fragomeni (2004). This coupled shear walls were 120*120*10 cm, with an opening with dimensions 30*30 cm. This study has been carried out to find a better behavior for shear walls; FRP was also used to increase the strength of the shear wall.

Kheyroddin and Naderpour (2008) retrofitted the link beam in coupled shear walls using CFRP; they indicated a statistical method to increase the strength and ductility of the shear wall. Khatami (2010) studied coupled shear walls under cyclic loading and recommended optimization side for openings on concrete shear walls. Barjari (2012) investigated coupled shear walls that have been retrofitted; on these, the effect of steel reinforcing plates was seen to significantly increase the ultimate strength of coupled shear walls.

In this study, two different types of vents were investigated. The results of three buildings are compared with double shear wall, rectangular shear wall and square shear wall in this investigation. All models were analyzed under lateral chronological history; lateral displacement, energy absorption capacity and hysterical behaviors were also identified. Example 1 of the double shear wall is shown in Figure 1

Figure 1: Concrete shear wall with opening (Iran; Semnan 2011)

II. OPENINGS

The presence of openings in the wall greatly reduces the maximum loading capacity of the equivalent steel wall. Sahib and Desayi showed that although 75% of the final loads for cracking loads are higher than TW compared to the walls, the presence of openings eventually negates the advantage of a limitation on all sides. (Saheb SM, Desayi P., 1990; 78).

On the other hand, significant gains in final capacity can be achieved. It is believed that the differences between the above studies, although they study the same scale (effects of restrictions on walls with openings), can be explained in terms of the different schemes and sizes of openings studied by the studies. Investigation Furthermore, it is not clear whether the side restrictions are able to function properly in providing the desired restriction effect. (Doh JH, Fragomeni S. 2006, 103-105),

The final load size controls the early failure of the column or beam strips that surround the slot, however, the opening size that the side constraints must have to play an important role in the final capacity is currently unknown.

III. BUILDING MODEL AND EARTHQAUKE ACTIONS

In this study, non-linear behavior of double concrete shear walls is investigated. A10-shaped building with a height of 3 meters per story, regularly in the outline and with a double shear wall, similar to This building consists of five periods spanning 5 meters in the X direction and three meters 4 meters in the Y direction. The concrete strength is 25MPa, and the yield strength of steel is 400MPa. The shear walls are placed in the middle of the third period along the X direction. The typical building is shown in Figure 2.

The objective of the analysis is to compare the numerical results of the impact of openings in shear walls, which occur during the seismic response of reinforced concrete buildings that are considered under semi-impact earthquakes. Shear walls are designed using three different shapes. The first model is considered complete shear walls, which are called 10-C-SH. Figure 10 shows the number of stories from a long investigated building; C is a shortcut to complete and SH is a shortcut to a shear wall. The other two models have openings in order to weaken the structure. Similar to the square openings in the center and right side, respectively, of the shear walls.

Figure 2: The analyzed building model

One model is referred to as 10-SH-RO, indicating the opening of a square on the right side of the shear wall; the other model is indicated by 10-SH-CR, which represents a square opening in the center of the wall. The results of the three types of shear wall are compared with each other.

Quantities in this investigation that were evaluated for comparison are: lateral time history displacement and amount of energy absorption under near fault ground motion. The three models for the shear walls are represented in Figure 3.

Figure 3: Three Different Shapes of Opening

In this investigation, two earthquake records are used: Taiwan and Loma Brita. The Taiwan earthquake occurred on (October 14 1986). The seismic excitement was strong with a force of 7.30; in this record the PGA was 0.207g, which occurred at a center earthquake distance of 77 km. The other record used for analysis is Loma Prieta, which occurred on (18 November 1989).

With a magnitude of 6.9, this earthquake had a maximum PGA of about 0.638g. These two earthquake records (shown in Figure 4) have been selected for a comparative analysis of the results of the three different types of shear walls used in the 3D building considered.

Figure 4: Two Near-Fault Earthquakes

IV. RESULTS OF THE ANALYSIS OF THE NUMERICAL MODELS

A. Lateral Displacements

Numerical modeling of buildings is performed using SAP 2000. Three different systems have been considered in order to analyze the styled building. In this part of the study, the models are called the full shear wall (10CSH), the square hole shear wall in the middle of the wall (10SHCO) and the shear wall

with a square hole in the right side of the wall (10SHRO). Two of the aforementioned earthquake records were used to analyze history history responses.

First, all models were analyzed under the Loma Prieta record. The nonlinear timeline of displacements, shown in Figure 5, indicates a general fluctuation in higher lateral displacement responses in all the models examined.

Tim e (s)

Figure 5: Time history of displacements under Loma Prieta earthquake

Maximum lateral displacement occurred in 10SHRO model, from the three studied models, at the instant of 9.2 seconds. These maxima of top lateral displacements under Loma Prieta were: 29 cm for 10SHRO model; a value of 27 cm for 10SHCO model (8% less than the maximum lateral

displacement of 10SHRO model); and 25 cm for 10CSH model (17% less than for 10SHRO model).

Moreover, for models examined under the Taiwan earthquake record (with PGA about one-third of the PGA

Loma), the displacement time record obtained shows a more regular pattern.

The maximum upper side displacement was: 17 cm, which occurred for the 10SHRO model; 15 cm, for the 10SHCO model; and finally, 14 cm for the 10CSH model.

For all models and earthquake records, shear walls add great rigidity to the building, contributing to reduced lateral displacement and increased lateral strength.

B. Energy Absorption

Shear walls energy absorption at the basement first story is higher than in the other stories and on the order of 75% of the earthquake energy (Khatami and Kheyroddin, 2010). Considering the three shear wall models of the building under Loma Prieta earthquake, the basal shear for different models has been compared with each other (Figure 7).

The lowest basal shear found is 175 ton, which occurred in 10SHRO model. The basal shear rises to 850 ton for 10SHCO model. The basal shear maximum value is 1200 ton, in 10CSH model.

Figure 7: Energy Absorption under Loma Prieta record

For Taiwan earthquake comparisons (Figure 8), the maximum baseline shear values were evaluated as follows: about 800 tons in the 10CSH model; 475 tons in the 10SHCO

model (about 60% of the value supported by the 10CSH model); and only 90 tons, for the 10SHRO model.

These results indicate that with respect to the energy absorption the complete shear wall model absorbs most of the energy, in comparison with other models under near fault ground motions. The results of the analyses are summarized in Tables 3.1 and 3.2.

Table 3.1: The results of the analysis under Loma Prieta earthquakeShear Wall TypeMaximum Lateral DisplacementMaximum Basal Shear

Shear Wall Type	Maximum Lateral Displacement (cm)	Maximum Basal Shear (ton)	
10 C SH	25	1200	
10 SH CO	27	850	
10 SH RO	29	180	

Table 3.2: The results of the analysis under Taiwan earthquake

Shear Wall Type	Maximum Lateral Displacement Maximum Basal Sl	
	(cm)	(ton)
10 C SH	14	800
10 SH CO	15	475
10 SH RO	17	90

V. COMPLEMENTARY FINITE ELEMENT ANALYSIS OF A SHEAR WALL PANEL

Three different shear wall panels are selected for investigating the influence of openings on a shear wall. The shear walls are modeled by ANSYS software (1992), using the 3D SOLID 65 element represented in Figure 9. This element is capable of cracking in tension and crushing in compression. In concrete applications, for instance, the solid capability of the element may be used to model the concrete while the rebar capability is available for modeling reinforcement behavior.

Other cases for which the element is also applicable would be reinforced composites and geological materials (such as rock). The element is defined by eight nodes having three degrees of freedom at each node: translations in the nodal x, y and z directions. Up to three different rebar specifications may be defined. Nonlinear behavior, initial deflections and imperfections, and creep are other capabilities available for this element.

Shear wall panels are analyzed by the mentioned finite element program to assess the effect of openings on the wall. The reference model is a complete shear wall, so-called CSH. Dimensions of the wall and its thickness were selected in order that the cross-section is equal with that from the SAP 2000 model: this means that the concrete shear wall is 400*300*10 cm. Two other shear walls are also modeled with an opening in center and at the right hand side of the wall. They are called SHCO and SHRO for center opening and right side opening, respectively. Shape of opening is a square with size of 100*100cm. Walls have been meshed by square elements (10*10 cm). The results of past studies have shown that square meshes are able to analyses finite element model of shear walls better than other shapes (Khatami and Kheyroddin, 2011). Two input strength parameters – ultimate uni-axial tensile and compressive strength – were needed to define a failure surface for the concrete. The Poisson ratio for the concrete was assumed to be 0.2. The shear wall transfer coefficient of closed crack is 0.9 and of open crack is 0.25.

A. Calibration of the Used Software

To control the accuracy of the mentioned finite element program and to calibrate the meshing realized using eight-node solid elements, Doh and Fragomeni (2004) experimental work and results were herein used. Also, Hallinan and Guan (2005) examined numerically the behavior of concrete square shear wall – tested in laboratory – with a 30 cm square opening in the middle. The wall dimensions were 120*120*10 cm (length, width and thickness, respectively) as represented in Figure 10.

Figure 10. Experimental shear wall and ANSYS results

The shear wall is reinforced with #14 bars, positioned every 10 cm. A lateral load of 1000 kN was applied at top of the shear wall in order to push it. When the lateral load reaches to 220 kN, the wall started cracking and at this stage the lateral displacement due to this load is equal to 0.25 mm. The lateral load bearing capacity of the wall increases until reaching 1.9 mm of lateral displacement and finally it yields when the applied load is 840 kN.

It has been seen in this experiment that the cracking of the opening's corners extended and spread to the corner of the wall by increasing the amount of lateral load, until finally the shear wall was completely destroyed and collapsed at 1010 kN lateral loading force; at this collapse load the panel reached an 8 mm lateral displacement. In order to investigate the accuracy of the nonlinear analysis with the finite element program, results of mentioned experimental test were compared with the finite element program results. This comparison has been carried out to verify key aspects of the numerical model. The load-displacement curve shown in Figure 11 indicates that the results of the finite element program are very similar to the experimental results.

Figure 11. Comparison of Results Obtained with ANSYS and with the Experimental Analysis

The ultimate lateral strength in the finite element analysis is 1090 kN, which is 8% more than the value from the experimental investigation. Final top lateral displacement of the panel, determined by ANSYS, was 7.2 mm. Consequently, the used finite element software has shown good response.

B. Results for Different Panel Models

Three different types of shear wall panels (CSH, SHCO and SHRO), coherent with the shear wall typologies used earlier in the 10-floor 3D building, have been analyzed using the software ANSYS calibrated in the previous paragraph with a rational calibration case. Results of the analysis showed different responses for each panel typology. The crack patterns of the panel models are shown in Figure 12.

Figure 12. Crack patterns of the three analysed panel models

The results for each panel model are represented by the load-deflection paths in Figure 13, but are detailed separately below. For the CSH model (complete shear wall) the analytical value of the first crack load is 220 kN, which occurred at a displacement of 0.25 mm. Also, the failure load for this panel is 1220 kN, which obviously was the highest value of the failure load among the three analyzed panel models.

For the SHCO panel model (square opening in the centre) the first crack occurs at a lateral load of 210 kN; afterwards, model still stiffens and resists load until yielding at around 685 kN. Load- displacement curve shows that the final load is about 890 kN with a 12 mm displacement at the onset of failure. In this model the ultimate load is 37% lower than the CSH panel model.

The last panel model CHRO (opening in the right hand side of the panel) the first crack load and the ultimate load were 198 kN and 790 kN, respectively; yielding occurs around 450 kN.

Overall it seems that the existence of openings causes a delay in the carrying capacity of the panel to resist lateral forces. For the SHCO panel model the yielding plateau occurs between lateral displacements of 3 to 6 mm; while for the SHRO panel model, the yielding plateau is wider and occurs between 2.5 to 7.5 mm.

With increase in the loading, cracks appear in concrete and it undergoes nonlinear deformations with a slight increase in lateral load carrying capacity nevertheless causing significant deformability in the wall.

Figure 14. Comparison the Load Paths of the three panel models under lateral loads

These results indicate that openings can decrease the final lateral load capacity of the shear wall up to 54% (in relation to the complete shear wall case). It is also recommended that

openings be situated at the center of the corresponding shear walls, minimizing decrease of strength and the increase of deformations for lower loads.

	Maximum Lateral	Yielding Displacement	Maximum Lateral	Ductility		
	Force (kN)	(mm)	Displacement (mm)			
CSH	1220	1.2	10	8.33		
SHCO	890	1.3	12	9.23		
SHRO	790	1.3	15.5	11.93		

Table 4.1: The results of panel model analysis under Loma Prieta earthquake

VI. CONCLUSIONS

Three different structural systems of a 3D building with shear wall, under two near-fault ground motions, were analyzed. Lateral displacements and basal shears were selected as the comparative quantities in a first study of the buildings by using SAP 2000. The final ultimate resisting lateral force and the top lateral displacement were selected in a second study of almost square panel models (without and with opening) by using ANSYS. In the first study, the complete shear wall of the 3D building was able to absorb more energy than other investigated models of shear wall with openings. As opening decreases lateral carrying capacities of shear walls and panels, the second study also indicated a deformation delay - of the panel with opening as compared with the complete panel occurring at the yielding load level. These facts are characteristic of the behavior and performance of shear walls and panel with openings, decreasing their role in lateral load carrying capacity.

REFERENCES

- [1] 14th European Conference on Earthquake Engineering. 14ECEE, Ohrid, Macedonia.
- [2] Barjari, S.H. (2012). Investigation of nonlinear behavior of openings in shear walls. MSc Thesis in Civil Engineering (Structures) supervised by Prof. A. Kheyroddin, Islamic Azad Univerity (Takestan Branch), Iran.
- [3] Barros, R.C. (1999). Multidisciplinary research in structural instabilities at CEDEC of FEUP (in Portuguese: Investigação multisectorial sobre instabilidade estrutural no CEDEC da FEUP), 1º Congresso Luso- Mocambicano de Engenharia, Maputo, Mozambique.
- [4] CSI. Computers and Structures Inc., SAP 2000. Version 8.
- [5] Doh JH, Fragomeni S. Ultimate load formula for reinforced concrete wall panels with openings. Adv Struct Eng 2006.
- [6] Doh, J.H. and Fragomeni, S. (2004). Evaluation and experimental work for concrete walls with openings in one and

two-way action. The Third Civil Engineering Conference in the Asian Region (3rd CECAR), Seoul, Korea.

- [7] Elnashahi, A.S. and Pinho, R. (1998). Repair and retrofitting of RC walls using selective techniques. Journal of Earthquake Engineering, Vol. 2, No. 4, pp. 525-568.
- [8] Hallinan, P. and Guan, H. (2005). A numerical study on oneway and two-way concrete walls with opening. Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing. Editor: B.H.V. Topping, Civil-Comp Press. Stirlingshire, Scotland.
- [9] Hui, W. and Bing, L. (2003). Investigating the load paths of RC shear wall with openings under reversed cyclic loadings. Pacific Conference on Earthquake Engineering. Paper No. 123.
- [10] Iranian Journal of Science & Technology, Vol. 32, No. B2, pp 79-89.
- [11] Khatami, S.M. (2010). Investigation of linear and nonlinear behavior of flanged section shear walls. MSc Thesis in Civil Engineering (Structures) supervised by Prof. A. Kheyroddin, Islamic Azad Univerity (Takestan Branch), Iran.
- [12] Khatami, S.M. and Kheyroddin, A. (2010). Investigation of the nonlinear behavior of RC flanged shear walls.
- [13] Khatami, S.M. and Kheyroddin, A. (2011). The effect of flange thickness on the behavior of flanged-section shear walls. Elsevier Science Direct, Procedia Engineering, Vol. 14, pp. 2994-3000.
- [14] Kheyroddin, A. and Naderpour, H. (2010). Nonlinear finite element analysis of composite RC shear walls.
- [15] Saheb SM, Desayi P. Ultimate strength of RC wall panels with openings. J Struct Eng-Asce 1990.
- [16] Saheb, S.M. and Desayi, P. (1990). Ultimate strength of RC wall panels with openings. Journal of Structural Engineering, ASCE, Vol. 116, No. 6, pp. 1565-1578.
- [17] Swanson Analysis Systems Inc. (1992), ANSYS (Revision 5.4), Users Manual: Theory, Vol. IV. Vlasov, V.Z. (1961). Thin Walled Elastic Beams, Israel Program for Scientific Translation.