
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue4 (July-August 2015), PP. 230-235

230

ECU State Manager Module Development and

Design for Automotive Platform Software Based on

AUTOSAR 4.0

Dhanamjayan P.R.1, Kuruvilla Jose2, Manjusree S.3
1PG Scholar, Embedded Systems, 2Specialist, Automotive Electronics,

3Assistant Professor. Department of Electronics

Sree Buddha College of Engineering, Kerala, India,
2Transportation Business Unit Tata Elxsi Ltd,

Kerala, India

 1dhanamjayan.pr@gmail.com
3manjusree.s1@gmail.com

Abstract— — As the number of vehicles is increasing day by

day, the infrastructure requirements associated with vehicles are

also become complex. Hence the count of ECU used in vehicles, in

order to satisfy these requirements are growing. As a result

complexity increases. The complexity of ECU can be reduced to a

great extend by using a standardized architecture. Hence

AUTOSAR (AUTomotive Open System Architecture) came into

existence and got much popularity in the automotive domain.

AUTOSAR is an open and standardized platform for automotive

software. By using AUTOSAR standardization, scalability,

increased quality and safety of E/E systems can be achieved.

EcuM (ECU State Manager) implements the Ecu state

management in AUTOSAR platform. EcuM is module present in

system services layer of AUTOSAR. EcuM is responsible for

initialization and de-initialization of OS and other basic software

modules. It also manages all the wakeup events associated with

ECU. This paper focuses on the design and development of EcuM

module based on AUTOSAR 4.0.

Index Terms :API, AUTOSAR, ECU, EcuM.

I. INTRODUCTION

The AUTOSAR is an open and standardized layered

automotive software architecture jointly developed by

automobile manufacturers, suppliers and tool developers. The

scope of AUTOSAR includes all the vehicle domains. For

attaining software reusability with shorter development life

cycle requires new software architecture. AUTOSAR is used as

a standardized infrastructure for automotive application

software development. Different ECU manufacturers uses their

own software for ECUs . Hence the software associated with it

is not standardized. In vehicles a large number of ECU are used

for implementing different applications. If the ECU software is

not standardized it becomes almost impossible to integrate the

ECU to complex vehicle network infrastructure. Then it

becomes costlier and complex. Inorder to overcome these,

AUTOSAR architecture is widely accepted in automotive

domains. It gives increased flexibility and scalability to transfer

and integrate functions, cost optimization of scalable systems,

flexibility for product modification and updates, improved

reliability and quality of E/E systems.

The rest of the paper is organized as follows. Software

architecture is explained in section II. The different phases of

ECU state manager is discussed in Section III. Section IV

describes about the high and low design. The configuration is

explained in Section V. the implementation and testing

methods are illustrated in Section VI. Experimental results are

presented in section VII. Concluding remarks are given in

section VIII.

II. SOFTWARE ARCHITECTURE

AUTOSAR layered architecture describes hierarchical

structure of software with relation and mapping of software

layers with basic software modules. This architecture gives

strong interaction between application software and underlying

hardware components like sensors, actuators and

microcontroller hardware. Fig 1(a) shows the AUTOSAR

architecture that distinguishes on the highest abstraction layer

between three software layers. The three software layers are

Application layer, Runtime Environment (RTE) and Basic

Software which runs on a microcontroller. The upper layer is

the Application layer which consists of application software

components which are linked through an abstract component,

named the virtual function bus. The application software

components are the smallest pieces that have individual

functionality. The middle layer is the RTE, the layer providing

communication services to the application software. The lower

layer is the Basic Software layer that consists of functional

group corresponding to system, memory and communication

services.

The Basic Software (BSW) layer in the AUTOSAR is

further divided into layers: Services, ECU Abstraction,

mailto:1dhanamjayan.pr@gmail.com
mailto:3manjusree.s1@gmail.com

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue4 (July-August 2015), PP. 230-235

231

Microcontroller Abstraction and Complex Drivers as in

Fig.1.(b).

(a)

(b)

Fig 1(a)AUTOSAR layered architecture. (b) AUTOSAR layered architecture

with BSW description

The Basic software layers are further divided into

functional groups. System services, memory and

communication are examples of different services. The lowest

software layer of Basic software (BSW) is the Microcontroller

Abstraction Layer. It contains internal drivers, which are

software modules with direct access to the internal peripherals

and microcontroller. It’s task is to make higher software layers

independent on microcontroller. The drivers of Microcontroller

Abstraction Layer are interfaced by the ECU Abstraction

Layer. It also contains drivers for external devices. The main

task of this layer is to make higher software layers independent

of ECU hardware layout. The Complex Drivers Layer spans

from the hardware to the RTE. Its main task is to provide the

possibility to integrate special purpose functionality like

drivers for devices. The Services Layer is the highest layer of

the Basic Software which provides basic services for

applications and basic software modules. The RTE is a layer

providing communication services to the application software.

The main task of RTE is to make AUTOSAR software

components independent from mapping to a specific ECU. The

AUTOSAR Software Components communicate with other

components (inter and/or intra ECU) and/or services via the

RTE.

III. ECU STATE MANAGER

The ECU State Manager (EcuM) module is a basic software

module that manages common aspects of ECU states. EcuM is

present in the system services layer of AUTOSAR

architecture. Specifically, the ECU Manager module initializes

and de-initializes the OS, the BSW Scheduler (SchM) and the

Basic Software Mode Manager (BswM) as well as some basic

software driver modules. ECU Manager module configures

the ECU for SLEEP and SHUTDOWN when requested and

manages all wakeup events on the ECU.

The ECU Manager module provides the wakeup validation

protocol to distinguish ‘real’ wakeup events from ‘erratic’

ones. The ECU Manager module have different phases of

operation: STARTUP, UP, SLEEP, SHUTDOWN and OFF

phases.

A. STARTUP Phase

The purpose of the STARTUP phase is to initialize the

basic software modules to the point where Generic Mode

Management facilities are operational. ECU Manager module

takes control of the ECU startup procedure. Startup process is

done by executing a set of sequence before starting the OS

(StartPreOS Sequence) and another set of sequence after

starting the OS (StartPostOS Sequence). StartPreOS Sequence

includes setting programmable interrupt priorities, initializing

BSW modules, checking configuration consistency, setting

default shutdown target and then starting the OS. StartPostOS

sequence includes initializing BSW Scheduler i.e., Initializing

the semaphores for critical sections used by BSW modules

and initializing BSW Mode Manager.

B UP Phase

In the UP Phase, the EcuM_MainFunction is executed

regularly and its major functions are to check if wakeup

sources have woken up and to initiate wakeup validation, if

necessary and to update the Alarm Clock timer. Wakeup

source are not only handled during wakeup but continuously,

in parallel to all other EcuM activities. This functionality runs

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue4 (July-August 2015), PP. 230-235

232

in the EcuM_MainFunction fully decoupled from the rest of

ECU management.

C SLEEP Phase

The ECU saves energy in the SLEEP phase. Typically, no

code is executed but power is still supplied, and if configured

accordingly, the ECU is wakeable in this state. The ECU

Manager module provides a configurable set of (hardware)

sleep modes which typically are a tradeoff between power

consumption and time to restart the ECU.

The ECU Manager module wakes the ECU up in response to

intended or unintended wakeup events (e.g. EVM spike on

CAN line). Since unintended wakeup events should be

ignored, the ECU Manager module provides a protocol to

validate wakeup events. The protocol specifies a cooperative

process between the driver which handles the wakeup source

and the ECU Manager

D SHUTDOWN Phase

The SHUTDOWN phase handles the controlled shutdown

of basic software modules and finally results in the selected

shutdown target OFF or RESET.

E OFF Phase

The ECU enters the OFF state when it is powered down. The

ECU may be wakeable in this state but only for wakeup

sources with integrated power control. In any case the ECU

must be startable (e.g. by reset events).

IV. DESIGN

The ECU Manager Module provides a set of APIs

(Application programming Interfaces) that are to be realized

for EcuM functionality. Design of EcuM consists of mainly

two phases. They are High Level Design (HLD) and Low

Level Design (LLD). High Level Design gives the overall

system design in terms of functional architecture and the

overview of system development. The Low Level Design

gives the design of the actual program code which is designed

based on High Level design. It defines the internal logic of the

corresponding module. HLD and LLD are done by using the

design tool Enterprise Architect version 9.3. Enterprise

Architect supports a number of methods of modeling business

processes using UML as the foundation modeling language.

A High Level Design of EcuM

The High Level Design of EcuM is shown in Fig 2.

B Low Level Design of EcuM

Low level design is done by drawing the activity diagram/

flow chart of APIs realized by Ecu Manager module. It

defines the internal logic of the APIs. The flow chart for some

of the APIs that are realized is shown in Fig 3.

V. CONFIGURATION

The configuration of EcuM module is done by using the

configuration tool eZyConfig. The routing table is configured

during the post build time and the parameters corresponding to

minimum routing is configured at link time. This kind of tools

are developed by AUTOSAR stack supplier.. In order to build

AUTOSAR-compliant software for an ECU, the developer has

to depend on configuration tools, since manual configuration is

time consuming. Moreover each OEM would be having a

specific requirement that needs to be achieved. These

requirements can be achieved by extending the standard

AUTOSAR specification like adding vendor specific modules,

containers, parameters etc.

Fig 2. High Level Design of EcuM

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue4 (July-August 2015), PP. 230-235

233

Fig 3 Flow Chart of EcuM_Shutdown()

VI. IMPLLEMENTATION AND TESTING

The development of DCM is done by coding all the APIs

realized by it. Coding is done using 'C' Language. The file

structure for the development consists of header files and code

files (source files).

The ECU Manager module has a well defined code file

structure which is shown in Fig. 4. It includes the header file

and configuration file required for EcuM. The EcuM module

implementation shall provide a file named EcuM.h which

contains fix type declarations, forward declarations to

generated types, and function prototypes. The ECU Manager

module implementation shall provide a

EcuM_Generated_Types.h file which contains generated type

declarations that fulfill the forward declarations in EcuM.h. It

also provides a EcuM_Cfg.h file which contains the

configuration parameters. EcuM_Cbk.h file contains the

callback/callout function prototypes required for EcuM

module. SchM_EcuM.h and MemMap.h are included in ECU

Manager module implementation. MemMap.h makes it

possible to map the code and the data of the ECU Manager

module into specific memory sections. The ECU Manager

module shall include the Dem.h file contains the API and

Event Id symbol definitions required to report errors. The file

EcuM_Types.h shall include Rte_EcuM_Type.h to include the

types which are common used by BSW Modules and Software

Components. EcuM_Types.h and EcuM.h shall only contain

types, that are not already defined in Rte_EcuM_Type.h.

The coding was done in C by using Visual C++ 2010

express edition. It is successfully compiled and build without

any error. Fig. 5 shows the snap shot of code build in Visual

C++ 2010 express edition.

Fig 4. Code File Structure of EcuM Module

Fig 5 Snap shot of code build in visual C++ 2010 express edition

Testing is done inorder to verify the correctness of module

implementation. First module testing is done and then

integrated testing has to be carried out. The goal of unit testing

is to isolate each part of the program and show that the

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue4 (July-August 2015), PP. 230-235

234

individual parts are correct. A unit test provides a strict, written

contract that the piece of code must satisfy. Unit testing finds

problems early in the development cycle. This includes both

bugs in the programmer's implementation and flaws or missing

parts of the specification for the unit.

The unit testing of EcuM can be done by individually

validating the API’s associated with it. Visual C++ is used for

EcuM module testing. Testing application has been written for

the module testing.

Once all the individual units are created and tested,

integration testing is started by combining those “Unit Tested”

modules. The main function or goal of Integration testing is to

test the interfaces between the units/modules. The individual

modules are first tested in isolation. Once the modules are unit

tested, they are integrated one by one, till all the modules are

integrated, to check the combinational behavior, and validate

whether the requirements are implemented correctly or not.

Validation platform used for integration testing is MPC5668G

Evaluation board.

VII. RESULTS

The APIs(Application Programming Interface) associated

with EcuM module is developed. Using the tool Enterprise

Architect version 9.3 High Level Design (HLD) and Low

Level Design (LLD) are done. The C code is written in

Notepad++ and compiled using Diab compiler. The testing is

done with the help of visual C++ 2010 express edition.

A Unit Testing Results

In the unit testing each of the Application Programming

Interfaces(API) are tested by written test application C codes.

By successfully running the test application API can be

validated. After the successful testing of each APIs it can be

bulid as a library file. Fig. 6. Shows build output (EcuM.lib)

using the diab compiler. The library file is called by all other

modules that requires the functionality of EcuM.

B Integration Testing Results

After the creation of EcuM.lib file we have compiled the

whole AUTOSAR source by integrating EcuM.lib with other

software modules in the AUTOSAR. The successful

compilation and building has generated an executable elf file.

The screen shot of the AUTOSAR source compilation and elf

file generation is shown in Fig. 7

The generated elf file is flashed to MPC5668G Board

using Trace32 software. Fig. 8 shows the picture of

MPC5668G evaluation board

Through Interactive Generator block, message is send from

CANoe to MPC5668G Board and this message can be viewed

in Trace window of Vector CANoe. The successful

communication between CANoe and MPC5668G evaluation

board shows that integrating testing is a success.

Fig 6 Build output of EcuM from diab

Fig 7 Integrated build output in diab compiler

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue4 (July-August 2015), PP. 230-235

235

Fig 8 MPC5668G Evaluation board

VIII. CONCLUSION

As the development in automotive industry is in a rapid

phase, a standardized architecture is necessary for ECU’s in

the vehicles to reduce complexity and to increase safety. Thus

AUTOSAR architecture is now widely used as a standardized

architecture in automotive industry because of its peculiar

features. The Ecu State Manager (EcuM) module present

inside the services layer of AUTOSAR architecture is being

realized. All the APIs (Application Programming Interfaces)

of EcuM module is developed. Based on the requirements and

specifications the High Level Design and Low Level Design is

done using the tool Enterprise Architect version 9.3. The

module is then tested using Unit testing and Integrated testing.

Unit testing is done by creating sample application in

Microsoft Visual C++ for functional validation of APIs.

Integration testing is done with the help of MPC5668G

evaluation board and result was verified by transmitting and

receiving messages between the MPC5668G board and Vector

CANoe tool.

REFERENCES

[1] AUTOSAR, Specification ECU State Manager V4.2.0

R4.0 Rev 3, 2011. [Online]. Available.

http://www.autosar.org/, 2011.

[2] AUTOSAR, Release 4.0 Overview and Revision History

V1.2.1 Release 4.0 Rev 3, 2012.[Online].

Available.http://www.autosar.org/, 2012.

[3] AUTOSAR Partnership, “AUTOSAR_Technical

OverviewV4.2.0R4.0Rev3”.[Online]. Available.

http://www.autosar.org/download/R4.0/AUTOSAR_Tech

nicalOverview.pdf 2011.

[4] AUTOSAR, Technical Overview, V1.2.1, R4.0,

Rev3.[Online] Available. http://www.autosar.org/, 2008.

[5] eZyConfig manual,Tata Elxsi Limited,November, 2009

[6] MPC5668G Microcontroller, Reference Manual Doc. No.

MPC5668XRM Rev.2, Freescale Semiconductor,

September, 2008.

