
 International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com,

 Volume 5, Issue 2 (March - April 2017), PP. 68-72

68 | P a g e

“DEVELOPMENT OF A FRAMEWORK FOR

SOFTWARE COST ESTIMATION: DESIGN

PHASE”

1Syed Ali Mehdi Zaidi, 2Dr. Vinodani Katiyar, 3Prof. (Dr.) S. Qamar Abbas,
1Research Scholar, S. V. University, Gajraula, Amroha,

2Professor, SRM, University, Lucknow,
3Director, AIMT, Lucknow,

Uttar Pradesh, India

Abstract— Today’s Software development cost estimation

models are based on soft computing techniques as neural

network, genetic algorithm, the fuzzy logic modelling etc. for

finding the accurate predictive software development effort and

cost estimation. Genetic Algorithm can offer some significant

improvements in accuracy and has the potential to be a valid

additional tool for software effort estimation. Genetic Algorithm

is one of the evolutionary methods for the effort estimation.
This paper focuses on the development of a framework for

software cost estimation model in the design phase and

variations of this model due to the public description of the

algorithm, available data, as well as prior use and research by

the research client by using object oriented software metrics.

The framework will then be implemented for the development

of a prediction model using Genetic Algorithm optimization

techniques.
Till date many developments have introduced various methods

of cost estimation including the recent advances in the field.

These were based on the effort, size, schedule and other. But

here effort will be made to evolve a framework for cost

estimation keeping in mind object oriented perspective. There

are many sophisticated parametric framework for estimating

the size, cost, and schedule of Object Oriented software project.

Index Terms — a framework for software, estimation models.

I. INTRODUCTION

A. Cost Estimation

Software cost estimation is a complex activity that requires

knowledge of a number of key attributes about the project for

which the estimate is being constructed. Cost estimating is

sometimes termed “parametric estimating” because accuracy

demands understanding the relationships among scores of

discrete parameters that can affect the outcomes of software

projects, both individually and in concert. Creating accurate

software cost estimates requires knowledge of the following

parameters:

1. The sizes of major deliverables, such as specifications,

source code, and manuals.

2. The rate at which requirements are likely to change

during development.

3. The probable number of bugs or defects that are likely

to be encountered.

4. The capabilities of the development team.

5. The salaries and overhead costs associated with the

development team.

6. The formal methodologies that are going to be utilized

(such as the Agile methods).

7. The tools that are going to be utilized on the project

8. The set of development activities that are going to be

carried out.

9. The cost and schedule constraints set by clients of the

project being estimated.

Although the factors that influence the outcomes of software

projects are numerous and some are complex, modern

commercial software cost-estimation tools can ease the burden

of project managers by providing default values for all of the

key parameters, using industry values derived from the integral

knowledge base supplied with the estimation tools. The several

approaches for the cost estimation techniques are developed. It

is classified into following: Model Based SLIM, checkpoint,

SEER, COCOMO, Expertise Based-Delphi, and Rule-Based,

Dynamics-Based, Abdel-Hamid Madnick.

Learning Oriented Neural, Case based, Regression Based, OLS,

Robust, Composite, Bayesian, and COCOCMO-II. Each

technique has their own significance and even its disadvantages

are also highlighted. This paper concludes that no one model or

single method should be favoured over others. The key to

achieve the goal i.e. estimation, can be done through variety of

tools and methods and then work upon the area that what

reasons effects estimation.

B. Object-Oriented Technology (OOT)

Object-oriented technology, aims to overcome most of the

problems associated with the traditional software technologies.

 International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com,

 Volume 5, Issue 2 (March - April 2017), PP. 68-72

69 | P a g e

Reusability, high modularity, and the innovative approach to

design, are expected to increase productivity in the production

process. However, the criticality of cost estimation is increased

by the change in the technological paradigm. Moreover, the

existing techniques were developed according to the traditional

software process and languages. The rapid growth of the object-

oriented industry and the big capitals committed by many

companies’ calls for innovative models.

Object oriented design restrict the design space exclude

procedure-oriented and other non-object software structures.

Freedom to experiment with non-object-oriented designs is

specifies to guide the designer to words an object – oriented

solution. There is strong evidence that object - oriented models

are generally natural and effective. However, object-oriented

designs is a heuristic modelling technique that have proved

conceptually power full practically effective, but may in some

cases be suboptimal.

C. Genetic Algorithms (GA)

Genetic Algorithms (GA) are direct, parallel, stochastic method

for global search and optimization, which imitates the evolution

of the living beings, described by Charles Darwin. GA is part of

the group of Evolutionary Algorithms (EA). The evolutionary

algorithms use the three main principles of the natural

evolution: reproduction, natural selection and diversity of the

species, maintained by the differences of each generation with

the previous. Genetic Algorithms works with a set of

individuals, representing possible solutions of the task. The

selection principle is applied by using a criterion, giving an

evaluation for the individual with respect to the desired solution.

The best-suited individuals create the next generation. The large

variety of problems in the engineering sphere, as well as in other

fields, requires the usage of algorithms from different type, with

different characteristics and settings.

Genetic algorithms are a type of optimization algorithm,

meaning they are used to find the optimal solution to a given

computational problem that maximizes or minimizes a

particular function. Genetic algorithms represent one branch of

the field of study called evolutionary computation, in that they

imitate the biological processes of reproduction and natural

selection to solve for the ̀ fittest' solutions [1]. Like in evolution,

many of a genetic algorithm's processes are random, however

this optimization technique allows one to set the level of

randomization and the level of control [1]. These algorithms are

far more powerful and efficient than random search and

exhaustive search algorithms, yet require no extra information

about the given problem. This feature allows them to find

solutions to problems that other optimization methods cannot

handle due to a lack of continuity, derivatives, linearity, or other

features.

D. Research Methodology

The purpose of research is to discover answers to questions

through the application of scientific procedures. The main aim

of research is to find out the truth which is hidden and which

has not been discovered as yet. Though each research study has

its own specific purpose, we may think of research objectives

as development of a cost estimation framework for software

project. My aim is to develop effective approaches in the cost

estimation framework for object oriented design phase.

Effective software project estimation is one of the most

challenging and important activities in software development.

Estimation is one of the cornerstones of effective project

planning: effective project planning and control is not possible

without a sound and reliable estimate.

The proposed work is to develop cost estimation framework in

design phase using object oriented perspective as well as to

develop a predictive model using a combination of Regression

and Genetic Algorithm optimization techniques.

II. RELATED RESEARCH WORKS

 A number of studies have been published to address cost

estimation models and framework for software development

and design phase. Existing studies are investigated and their

contents and limitations are as follows:

• Pushpendra K Rajput, Geeta Sikka, and Aarti, (2014),

proposed a hybrid model that exploits the uncertainty using

clustering the data. In this proposed model they used Genetic

Algorithm (GA) combined with COCOMO model on clustered

data. Model carries the desirable features of neural network,

including learning ability to classify the new project for using

the COCOMO model with best fit parameters. The best

parameters of COCOMO model can be found for each cluster.

They made comparison of estimated effort with original

COCOMO model which can be applied on larger data sets. This

scheme also avoids the problem of different estimated cost of

similar projects.

• Lalit V. Patil, et. Al., (2014) there are so many models

available categorized into algorithmic and non-algorithmic

model each of their strengths and weakness. The authors

proposed a hybrid approach, which consists of Functional Link

Artificial Neural Network (FLANN) and COCOMO-II with

training algorithm. FLANN reduces the computational

complexity in multilayer neural network. It does not have any

hidden layer, and it has fast learning ability.

• K.Ramesh, et. al., (2013), analyzed algorithmic modes

and non-algorithmic models in the existing models and

provided in depth review of software and project estimation

techniques existing in industry and literature based on the

different test datasets along with their advantages and

disadvantages.

• Rahul Chaudhary, et. al., (2013), showed that they can

estimate and compare the cost and effort more accurately by

using three technologies which are very prominent; they are

Grouping Methodologies, Object Oriented Metrics and

COCOMO II. All this work helps a manager or Estimator or

User of Software to use the previous work (project) in new Real

Time Project i.e. there are many references available for

 International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com,

 Volume 5, Issue 2 (March - April 2017), PP. 68-72

70 | P a g e

continuing to new Real Time Project and secondly, when same

goal project is developed by two different logics, then this Tool

helps to compare between both Real Time Project in a single

Dynamic window on the basic of Object Oriented Metric. They

further compared the software project cost estimation methods

based on grouping/groups as new methods that estimates

software project cost accurately and are then compared between

both the window (or projects result) result and help to fetch out

more accurate and correct comparison that helps user/manager

to select best old work for their future project.

• Tharwon Arnuphaptrairong, (2012), analyzed

software sizing articles reviewed from the literature and

presented the development, and achievements of software size

measurement. From the literature review it was found that

technologies and techniques related to requirement gathering,

and software analysis and design, such as, Structured Analysis

and Design Method (SSADM), and Object-oriented Analysis

and Design (OOAD), had impacted on the size measurement

models. This is because they are directly related to the software

functionality. Significant future challenges for software sizing

is probably the sizing for new product forms which include

requirement or architectural specifications, stories and

component-based development. They concluded that besides

the new product forms, the new process forms.

• Gurdev Singh, et. al., (2011) studied different type of

software metrics which are used during the software

development. They showed that a metrics program that is based

on the goals of an organization will help communicate, measure

progress towards, and eventually attain those goals. People will

work to accomplish what they believe to be important. Well-

designed metrics with documented objectives can help an

organization obtain the information it needs to continue to

improve its software products, processes, and services while

maintaining a focus on what is important. A practical,

systematic, start-to-finish method of selecting, designing, and

implementing software metrics is a valuable aid. • Mahmoud O.

Elish and Karim O. Elish, (2009) used TreeNet in predicting

object-oriented software maintainability. It has applied TreeNet

using two datasets and compared its prediction performance

against recently published object-oriented software

maintainability prediction models (MARS, MLR, SVR, ANN,

and RT). The results indicate that improved, or at least

competitive, prediction accuracy has been achieved when

applying the TreeNet model. The TreeNet model has achieved

improved prediction accuracy in terms of Pred(0.25) and

Pred(0.30) in both datasets. Furthermore, the TreeNet model

has achieved the best MMRE in one dataset, and the second best

MMRE in the other dataset. The results therefore reveal the

effectiveness of TreeNet in predicting object-oriented software

maintainability, and thus suggest that it can be a useful and

practical addition to the framework of software quality

prediction.

III. APPLICATIONS OF GENETIC ALGORITHMS

The algorithm described above is very simple, but variations on

this basic theme have been used in a large number of scientific

and engineering problems and models, including the following:

• Optimization: GAs has been used in a wide variety of

optimization tasks, including numerical optimization as well as

combinatorial optimization problems such as circuit layout and

job-shop scheduling.

• Automatic Programming: GAs has been used to evolve

computer programs for specific tasks, and to design other

computational structures, such as cellular automata and sorting

networks.

• Machine learning: GAs has been used for many

machinelearning applications, including classification and

prediction tasks such as the prediction of weather or protein

structure. GAs have also been used to evolve aspects of

particular machine-learning systems, such as weights for neural

networks, rules for learning classifier systems or symbolic

production systems, and sensors for robots.

• Economic models: GAs has been used to model

processes of innovation, the development of bidding strategies,

and the emergence of economic markets.

• Immune system models: GAs has been used to model

various aspects of the natural immune system including somatic

mutation during an individual's lifetime and the discovery of

multi-gene families during evolutionary time.

• Ecological models: GAs has been used to model

ecological phenomena such as biological arms races, host-

parasite coevolution, symbiosis, and resource flow in ecologies.

• Population genetics models: GAs have been used to

study questions in population genetics, such as Under what

conditions will a gene for recombination be evolutionarily

viable?".

• Interactions between evolution and learning: GAs

have been used to study how individual learning and species

evolution one another.

• Models of social systems: GAs has been used to study

evolutionary aspects of social systems, such as the evolution of

cooperation, the evolution of communication, and

trailfollowing behaviour in ants.

• Cost Estimation: Software cost estimation is important

for budgeting, risk analysis, project planning and software

improvement analysis. There are numerous estimation

techniques. During the past three decades there had been some

significant developments in effort estimation, size of software

and cost estimation methodology. Current software cost

estimation models have been experiencing increasing

difficulties in estimating the costs of software, as new software

development methodologies and technologies are emerging

very rapidly. Most of the software cost models generally rely

on such inputs as estimates of lines of source code, delivered

sets of instructions, function points and processing complexity

or experience levels to produce cost estimates. These models

 International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com,

 Volume 5, Issue 2 (March - April 2017), PP. 68-72

71 | P a g e

generally produce inaccurate results when used to estimate the

cost of software development in current development

environments such as those that use component-based software

development environments like visual languages

IV. PROPOSED FRAMEWORK FOR PREDICTION OF SOFTWARE

COST ESTIMATION

The present work deals with the development of a GA based

optimization model for the prediction of the software cost

estimates for which the object oriented dataset from forty Java

systems derived during two successive semesters of graduate

courses on Software Engineering is going to be used. For this a

two stage data analysis will be done. Initially the dataset will be

pre-processed, for the detection of the outliers using Robust

Linear Regression Technique.

Figure 1: Proposed framework

This will be done by assigning a weight to each data point.

Weighting is done automatically and iteratively using a process

called iteratively reweighted least squares. In the first iteration,

each point is assigned equal weight and model coefficients are

estimated using ordinary least squares. At subsequent iterations,

weights are recomputed so that points farther from model

predictions in the previous iteration are given lower weight.

Model coefficients are then recomputed using weighted least

squares. The process continues until the values of the coefficient

estimates converge within a specified tolerance.

Next, the model so obtained will be later on subjected to

optimization of its model parameters using Genetic Algorithm

optimization technique so as to arrive at a better software cost

estimation prediction accuracy. The genetic operators such

selection, crossover and mutation shall be used. GA runs to

generate solutions for successive generations. Hence the quality

of the solutions in successive generations improves. The

process is terminated when an optimum solution is found.

Finally, the performance of the model shall be analysed based

on RMSE factor. The general framework for the present work

is given above.

V. ALGORITHM FOR SOFTWARE COST ESTIMATION

FRAMEWORK:

The genetic algorithm is a method for solving both constrained

and unconstrained optimization problems that is based on

natural selection, the process that drives biological evolution.

The genetic algorithm repeatedly modifies a population of

individual solutions. At each step, the genetic algorithm selects

individuals at random from the current population to be parents

and uses them to produce the children for the next generation.

Over successive generations, the population "evolves" toward

an optimal solution. You can apply the genetic algorithm to

solve a variety of optimization problems that are not well suited

 for standard optimization algorithms,

 including problems in which the objective function is

discontinuous, nondifferentiable, stochastic, or highly

nonlinear. The genetic algorithm uses three main types of rules

at each step to create the next generation from the current

population:

• Selection rules select the individuals, called parents that

contribute to the population at the next generation.

• Crossover rules combine two parents to form children for the

next generation.

• Mutation rules apply random changes to individual parents to

form children.

The following outline summarizes how the genetic algorithm

works:

• The algorithm begins by creating a random initial population.

• The algorithm then creates a sequence of new populations. At

each step, the algorithm uses the individuals in the current

generation to create the next population.

To create the new population, the algorithm performs the

following steps:

1. Scores each member of the current population by computing

its fitness value.

2. Scales the raw fitness scores to convert them into a more

usable range of values.

3. Selects members, called parents, based on their fitness.

4. Some of the individuals in the current population that have

lower fitness are chosen as elite. These elite individuals are

passed to the next population.

5. Produces children from the parents. Children are produced

either by making random changes to a single parent mutation

or by combining the vector entries of a pair of parents

crossover.

6. Replaces the current population with the children to form the

next generation.

7. The algorithm stops when one of the stopping criteria is met.

 International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com,

 Volume 5, Issue 2 (March - April 2017), PP. 68-72

72 | P a g e

CONCLUSION

GA is a robust and general technique. Its main advantages over

other local search methods are its flexibility and its ability to

approach global optimality. The algorithm is quite versatile

since it does not rely on any restrictive properties of the model.

GA methods are easily "tuned". For any reasonably difficult

nonlinear or stochastic system, a given optimisation algorithm

can be tuned to enhance its performance and since it takes time

and effort to become familiar with a given code, the ability to

tune a given algorithm for use in more than one problem should

be considered an important feature of an algorithm. Its

convergence to the optima is ‘good’ even if the initial guess is

far away from optima. It statistically guarantees finding an

optimal solution.

In this study, applicability and capability of Genetic Algorithm

techniques for application in software design cost estimation as

a predictive tool has been investigated. It is seen that GA models

are very robust, characterised by fast computation, capable of

handling the noisy and approximate data that are typical of data

used here for the present study.

From the analysis of the results given earlier it is seen that GA

has been able to perform well for the prediction of effort

estimation. Due to the presence of non-linearity in the data, it is

an efficient quantitative tool. The studies have been carried out

using MATLAB simulation environment.

REFERENCES

[1] Pushpendra K Rajput, Geeta Sikka, and Aarti, (2014),

“CGANN-Clustered Genetic Algorithm with Neural

Network for Software Cost Estimation”, International

Conference on Advances in Engineering and Technology

(ICAET'2014), pp. 268-272.

[2] Mogili Umamaheswara Rao, et. al. (2014), “Effort

Estimation for Object-Oriented System Using Artificial

Intelligence Techniques”, Volume No: 1(2014), Issue No:

10, pp. 248-252.

[3] N. Veeranjaneyulu, S.Suresh, Sk.Salamuddin3 and Hyejin

Kim, (2014), “ Software Cost Estimation on e-Learning

Technique using A Classical Fuzzy Approach”,

International Journal of Software Engineering and Its

Applications Vol. 8, No. 11 (2014), pp. 217-222.

[4] Lalit V. Patil, et. Al., (2014), “Develop Efficient Technique

of Cost Estimation Model for Software Applications”,

International Journal of Computer Applications (0975 –

8887) Volume 87 – No.16, February 2014.

[5] Jenna Carr, (2014), “An Introduction to Genetic

Algorithm”.

[6] Jyoti G. Borade, (2013), “Software Project Effort and Cost

Estimation Techniques” International Journal of Advanced

Research in Computer Science and Software Engineering,

Volume 3, Issue 8, pp 730-739.

[7] Simon, D. (2013). Evolutionary Optimization Algorithms:

Biologically-Inspired and Population-Based Approaches to

Computer Intelligence. Hoboken: Wiley.

[8] K. Subba Rao, et. al. (2013), “Software Cost Estimation in

Multilayer Feed forward Network using Random Holdback

Method”, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 3,

Issue 10, pp 1309-1328.

[9] Matlab 2012a: Optimization Toolbox-Product

Documentation.

[10] Vahid Khatibi, Dayang N. A. Jawawi, (2011), “Software

Cost Estimation Methods: A Review”, Journal of

Emerging Trends in Computing and Information Sciences,

Volume 2 No. 1, pp 21-29.

[11] Erik D. Goodman, (2009), “Introduction to Genetic

Algorithms”, 2009 World Summit on Genetic and

Evolutionary Computation Shanghai, China. [12] Stein

Grimstad, et. al, (2006), “A Framework for the Analysis of

Software Cost Estimation Accuracy”, ISESE'06, ACM 1-

59593-218-6/06/0009.

[13] Andrey Popov, (2005), “User Manual, Genetic Algorithm

for Optimization”, Programs for MATLAB, ver. 1.0.

[14] Mitchell, M. (1996). An Introduction to Genetic

Algorithms. Cambridge: MIT Press.

[15] Bernard L. "Cost Estimation For Software Development",

Addision_Wesley, 1987.

[16] Albrechet, A.J. etc. "Software Function, Source Lines of

Code, and Development Effort Prediction: A Software

Science Validation", IEEE on Software Engineering, NOV

1983.

[17] Boehm, B.W. "Software Engineering Economics",

Prentice_Hall, 1981.

