
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 260-268

260 | P a g e

DESIGN & DEVELOPMENT OF A PROBABILISTIC

GRAPHICAL MODEL FRAMEWORK FOR

PROGRAM BEHAVIOUR ANALYSIS
Prof. Dr. G. Manoj Someswar1, Ms. Pushpanjali Patra2

1Professor & Dean (Research), 2Associate Professor,

Department of CSE, Nawab Shah Alam Khan College of Engineering & Technology,

Affiliated to JNTUH, Malakpet, Hyderabad – 500024, Telangana, India.

manojgelli@gmail.com

ABSTRACT- This research paper presents an innovative

model of a program’s internal behaviour over a set of test inputs

called the probabilistic program dependence graph (PPDG),

which facilitates probabilistic analysis and reasoning about

uncertain program behaviour particularly that associated with

faults. The PPDG construction augments the structural

dependences represented by a program dependence graph with

estimates of statistical dependences between node states, which

are computed from the test set.

The PPDG is based on the established framework of

probabilistic graphical models which are used widely in a variety

of applications. This research paper presents algorithms for

constructing PPDGs and applying them to fault diagnosis. The

research paper also presents preliminary evidence indicating that

a PPDG-based fault localization technique compares favourably

with existing techniques. The research paper also presents

evidence indicating that PPDGs can be useful for fault

comprehension.

Keywords: Probabilistic Program Dependence Graph,

Fault Localization, Dependency Network, regression testing,

conditional statistical dependence.

I. INTRODUCTION

 The program dependence graph can be used to construct a

novel and useful probabilistic graphical model of program

behaviour. The model captures the conditional statistical

dependence and independence relationships among program

elements in a way that facilitates making probabilistic

inferences about program behaviours. We call this model a

Probabilistic Program Dependence Graph (PPDG).

 A variety of graphical models have been used in software

engineering applications to abstract relevant relationships

between program elements or states and thereby facilitate

program analysis and understanding. These models include

control flow graphs, call graphs, finite-state automata, and

program dependence graphs. Program dependence graphs

(PDGs), which have proven useful in software engineering

applications such as testing, debugging, and maintenance

between program elements.[1] It augments program

dependence graphs with statistical dependence (and

independence) information in the principled way provided by

probabilistic graphical models, it is possible to substantially

increase the utility of program dependence graphs in some

software engineering applications.

 Probabilistic graphical models have proven useful in several

fields (e.g., medicine and robotics) due to their ability to

model both the presence of certain dependences between

variables of interest and the way in which the variables are

probabilistically conditioned on other variables.[2] A

probabilistic graphical model derived from a program

dependence graph provides a natural framework for modelling

both the presence of dependences and their statistical

strengths.

 Our technique produces the PPDG for a program by

augmenting its program dependence graph automatically. The

technique associates a set of abstract states with each node in

the PPDG. Each abstract state represents a (possibly large) set

of concrete nodes states in a way that is chosen to be relevant

to one or more applications of PPDGs. Each node has a

conditional probability distribution that relates the states of the

node to the states of its parent nodes.[3] The technique

estimates the parameters of the probability distribution by

analyzing executions of the program, which are induced by a

set of test cases or captured program inputs.

 Intuitively, PPDGs are well suited to these tasks for two

reasons. First, they can indicate how a failing execution differs

from successful ones, both structurally and statistically.

Second, context information generated from PPDGs can be

used for understanding why a particular program statement

might be suspected of causing a given failure. More generally,

a PPDG can be used as a knowledge base which can be

analyzed with different algorithms to understand various

program behaviours.

 The main contributions of this research paper are the

following:

 The PPDG, a novel probabilistic graphical model of

program behavior based on the program dependence graph,

 Applications of the PPDG to fault localization and

fault comprehension.

II. THE ROLE OF PROBABILITY

 It is important to distinguish two distinct ways in which

probability enters into legal disputes. First, and increasingly,

there are cases where the actual values of probabilities are or

appear relevant to the issues, and estimates of them are given

in testimony. These estimates will usually be based on

statistical data, although they will inevitably also incorporate a

range of assumptions, explicit or implicit, about the nature and

relevance of such data.

 For example, in a case where identification is based on a

DNA match, a forensic scientist might testify that (on the basis

of police DNA population samples and current genetic

mailto:manojgelli@gmail.com

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 260-268

261 | P a g e

understanding) the probability that a random individual might

provide such a match is one in ten million; or, in the trial of a

mother for murdering her babies, evidence might be offered,

on the basis of an epidemiological survey,of the probability

that they could have died from natural causes.[4] Such

testimony is of course open to challenge on the grounds that

the values given are wrong: they are based on wrong or

irrelevant data, they have been calculated using inappropriate

assumptions, their intrinsic uncertainty has been ignored, or

purely speculative values have been treated as hard fact.This

kind of attack is the bread and butter of the adversarial

system,and as such can be readily understood,at least in broad

outline, by the parties, the jury and the public.

III. OBJECTIVES

 Exposes the natural framework about the program

environment process. Identify the internal behaviour of the

program. Identify the fault localization after deployment.

Show the evidence for showing the dependence graph

representation process. Identify statistical dependence

identification process. Check the program behaviour and

increased statically strength.

IV. CHALLENGES

 Exposes the results in the form of graphical representation

process. Graphical level information identifies the result of

information in the form conditional dependence process.PPDG

provides that information like abstract states representation

process.[5] Information can be providing like valuable

behaviour environment creation can be implemented inside the

processing state.

V. EXISTING SYSTEM

 A variety of graphical models have been used in software

engineering applications to abstract relevant relationships

between program elements or states and thereby facilitate

program analysis and understanding. These models include

control flow graphs, call graphs, finite-state automata, and

program dependence graphs. Graphical models produced by

static analysis generally indicate that certain occurrences are

possible at runtime (e.g., control transfers, calls, state

occurrences, state transitions, and information flows), whereas

models produced by dynamic analysis indicate what actually

does occur during one or more executions.[6] However,

commonly used graphical models of internal program

dynamics do not support making inferences about how likely

particular program behaviours are. This severely limits their

utility for reasoning about the causes and effects of inherently

uncertain program behaviours such as runtime failures.

VI. PROPOSED SYSTEM

 We show how the program dependence graph can be used

to construct a novel and useful probabilistic graphical model

of program behaviour. The model captures the conditional

statistical dependence and independence relationships among

program elements in a way that facilitates making

probabilistic inferences about program behaviours. We call

this model a Probabilistic Program Dependence Graph

(PPDG). Our technique produces the PPDG for a program by

augmenting its program dependence graph automatically. The

technique associates a set of abstract states with each node in

the PPDG. Each abstract state represents a (possibly large) set

of concrete nodes states in a way that is chosen to be relevant

to one or more applications of PPDGs. Each node has a

conditional probability distribution that relates the states of the

node to the states of its parent nodes. The technique estimates

the parameters of the probability distribution by analyzing

executions of the program, which are induced by a set of test

cases or captured.

Proposed System Features

 Identify the fault comprehension and fault localization

process environment process. The PPDG, a novel probabilistic

graphical model of program behaviour based on the program

dependence graph, applications of the PPDG to fault

localization and fault comprehension, and. the results of

empirical studies that show that the PPDG can be useful for

these applications.

VII. DESIGN & DEVELOPMENT

A. Software Fault Localisation

 The larger, more complex a program, the higher the

likelihood of it containing bugs. It is always challenging for

programmers to effectively and efficiently remove bugs, while

not inadvertently introducing new one sat the same time.

Furthermore, to debug, programmers must first be able to

identify exactly where the bugs are, which is known as fault

localization

 Software fault localization is one of the most expensive

activities in program debugging. It can be further divided into

two major parts. The first part is to use a technique to identify

suspicious code that may contain program bugs. The second

part is for programmers to actually examine the identified

code to decide whether it indeed contains bugs. All the fault

localization techniques referenced in the following text focus

on the first part such that suspicious code is prioritized based

on its likelihood of containing bugs. Code with a higher

priority should be examined before code with a lower priority,

as the former is more suspicious than the latter, i.e., more

likely to contain bugs. As for the second part, we assume

perfect bug detection, i.e., programmers can always correctly

classify faulty code as faulty, and non-faulty code as non-

faulty. If such perfect bug detection does not hold, then the

amount of code that needs to be examined may increase.

 There is a high demand for automatic fault localization

techniques that can guide programmers to the locations of

faults with minimal human intervention. This demand has led

to the proposal and development of various techniques over

recent years. While these techniques share similar goals, they

can be quite different from one another, and often stem from

ideas which themselves originate from several different

disciplines.

B. Bayesian Network

 Bayesian networks are directed acyclic graphs whose nodes

represent random variables in the Bayesian sense: they may be

observable quantities, latent variables, unknown parameters or

hypotheses.[7] Edges represent conditional dependencies;

nodes which are not connected represent variables which are

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 260-268

262 | P a g e

conditionally independent of each other. Each node is

associated with a probability function that takes as input a

particular set of values for the node's parent variables and

gives the probability of the variable represented by the node.

C. Hidden Markov Model

 A hidden Markov model (HMM) is a statistical Markov

model in which the system being modeled is assumed to be a

Markov process with unobserved (hidden) states. An HMM

can be considered as the simplest dynamic Bayesian network.

The mathematics behind the HMM was developed by L. E.

Baum and coworkers.

 In simpler Markov models (like a Markov chain), the state

is directly visible to the observer, and therefore the state

transition probabilities are the only parameters. In a hidden

Markov model, the state is not directly visible, but output,

dependent on the state, is visible. Each state has a probability

distribution over the possible output tokens.[8] Therefore the

sequence of tokens generated by an HMM gives some

information about the sequence of states. Note that the

adjective 'hidden' refers to the state sequence through which

the model passes, not to the parameters of the model; even if

the model parameters are known exactly, the model is still

'hidden'.

D. Dependency Network

 The dependency network approach provides a new system

level analysis of the activity and topology of directed

networks. The approach extracts causal topological relations

between the network's nodes (when the network structure is

analyzed), and provides an important step towards inference of

causal activity relations between the network nodes (when

analyzing the network activity). This methodology has

originally been introduced for the study of financial data, it

has been extended and applied to other systems, such as the

immune system, and semantic networks.

 In the case of network activity, the analysis is based on

partial correlations, which are becoming ever more widely

used to investigate complex systems. In simple words, the

partial (or residual) correlation is a measure of the effect (or

contribution) of a given node, say j, on the correlations

between another pair of nodes, say i and k. Using this concept,

the dependency of one node on another node, is calculated for

the entire network. This results in a directed weighted

adjacency matrix, of a fully connected network. Once the

adjacency matrix has been constructed, different algorithms

can be used to construct the network, such as a threshold

network, Minimal Spanning Tree (MST), Planar Maximally

Filtered Graph (PMFG), and others.

E. Software Design

The objects discovered during analysis can serve as the

design or framework. A DFD is a graphical tool used to

describe and analyze the movement of the data through a

system including the process, stores of data, and flows in the

system. Next,we focus on the Uml diagrams.

VIII. DATA FLOW DIAGRAM

A DFD is a graphical tool used to describe and analyze the

movement of the data through a system including the process,

stores of data, and flows in the system. A DFD is also known

as “Bubble Chart” has the purpose of clarifying system

requirements and identifying major transformations that will

be used in system design.

 DFD Symbols: In the DFD there are four symbols.

1. A square defines a source or destination of the system

data.

2. An arrow identifies data flow. It is the pipeline

through which the information flows.

3. A circle or bubble represents a process that

transforms incoming data flow into outgoing data flows.

4. An open rectangle is a data store, data at rest or a

temporary repository of data.

Data Flow Diagram

Figure 1: Data Flow Diagram

A. Uml Diagrams

Unified Modelling Language (UML) is a Standardized

notation for object- oriented analysis and design UML is a

general-purpose modelling language that includes a graphical

notation used to create an abstract model of a system, referred

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 260-268

263 | P a g e

to as a UML model. Structure Diagram emphasize what

things must be in the system being modelled: such as Class

diagram.

Behaviour Diagram e mp h as izes wh a t mu s t

hap p en in the s ys t e m b e i ng modelled:

 Use case diagram

 Class diagram

 Activity diagram

 Sequence diagram

B. Use Case Diagram

A use case is a set of scenarios that describing an

interaction between a user and a system. A use case

diagram displays the relationship among actors and

use cases. The two main components of a use case

diagram are use cases and actors. An actor is

represents a user or another system that will interact

with the system you are modelling. A use case is an

external view of the system that represents some

action the user might perform in order to complete a

task.

C. Class Diagram

In the Unified Modeling Language (UML), a class

diagram is a type of static structure diagram that describes

the structure of a system by showing the system’s classes,

their attributes, and the relationships between the classes.

D. Activity Diagram

It describes the workflow behaviour of a system. Activity

diagrams are similar to state diagrams because activities are

the state of doing something. The diagrams describe the

state of activities by showing the sequence of activities

performed.[9] Activity diagrams can show activities that are

conditional or parallel.

E. Sequence Diagram

A sequence Diagram is an interaction diagram that

emphasizes the time ordering of message. It shows a set of

objects and the messages that sent and received by those objects.

An object in a sequence diagram is rendered as a box with

dashed line descending from it. The line is called the object

lifeline, and its represents the existence of an object over a period

of time.

The focus of control is a tall, thin rectangle that shows the

period of time during which an object is performing an action.

F. Collaboration Diagram

Collaboration diagrams represent interaction between

objects as a series of sequenced messages. Unlike a sequence

diagram, we don’t have to show the lifeline of an object in a

collaboration diagram. The sequences of objects are indicated

by sequence numbers preceding messages.

G. Use Case Diagrams

Use case diagrams model the functionality of system using

actors and use cases.

User Login

.

Figure 2: User Login

Figure 3: User Services

A. Class Diagram Class diagrams that shows a collection of static model

elements such as classes, types, and their contents and their

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 260-268

264 | P a g e

relationships. Class is a set of objects that share same

attributes, operations, and relationships A class is represented

as a rectangle. Classes are arranged in hierarchies by sharing

common structure and behaviour,that are associated with other

classes.

Figure 4: Class Diagram

B. Sequence Diagram:

A sequence diagram is an interaction diagram that

emphasizes the time ordering of messages. It shows a set of

objects and the messages that sent and received by those

objects. An object in a sequence diagram is rendered as a box

with a dashed line descending from it. The line is called the

object lifeline, and it represents the existence of an object over

a period of time. Messages are rendered as horizontal arrows

being passed from object to object as time advances down the

object lifelines indicates that message gets passed. The focus

of control is a tall, thin rectangle that shows the period of time

during which an object is performing an action.

Figure 5: Sequence Diagram

C. Collaboration Diagram

Collaboration diagrams represent interactions between

objects as a series of sequenced messages. Unlike a sequence

diagram, we don’t have to show the lifeline of an object in a

collaboration diagram. The sequences of objects are indicated

by sequence numbers preceding messages.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 260-268

265 | P a g e

Fig: 4.6 collaboration diagram

D. Activity Diagram:

Figure 6: Activity Diagram

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 260-268

266 | P a g e

Activity diagram is another important diagram in UML to

describe dynamic aspects of the system. Activity diagram is

basically a flow chart to represent the flow from one activity

to another activity. This flow can be sequential, branched or

concurrent. Activity diagrams deals with all type of flow

control by using different elements like fork, join etc. There

can be only one start state in a activity diagram, but there may

be many final states.

IX. SOFTWARE TESTING

 Software Testing is the process used to help identify the

correctness, completeness, security and quality of developed

computer software. Testing is a process of technical

investigation, performed on behalf of stakeholders, that is

intended to reveal quality-related information about the

product with respect to the context in which it is intended to

operate.

 The purpose of testing is to discover errors. Testing is the

process of trying to discover every conceivable fault or

weakness in a work product. It provides a way to check the

functionality of components, sub assemblies, assemblies

and/or a finished product It is the process of exercising

software with the intent of ensuring that the Software system

meets its requirements and user expectations and does not fail

in an unacceptable manner. There are various types of test.

Each test type addresses a specific testing requirement.

TESTING METHODOLOGIES

 Black box Testing: is the testing process in which

tester can perform testing on an application without

having any internal structural knowledge of

application. Usually Test Engineers are involved in

the black box testing.

 White box Testing: is the testing process in which

tester can perform testing on an application with

having internal structural knowledge. Usually The

Developers are involved in white box testing.

 Gray Box Testing: is the process in which the

combination of black box and white box tonics’ are

used.[10]

Module1 Module2 Module3

Units

 Units

 Units

i/p Integration o/p i/p Integration o/p

System Testing: Presentation + business +Databases

UAT: user acceptance testing

Figure 7: Levels of Testing

TESTING STAGES

Unit testing: Unit testing involves the design of test cases that

validate that the internal program logic is functioning

properly, and that program input produces valid outputs. all

decision branches and internal code flow should be validated

.it is the testing of individual units before integration .It is

done after the completion of an individual unit before

integration. This is a structural testing,that relies on

knowledge of its construction and is invasive. Unit tests

perform basic tests at component level and test a specific

business process, application and/or system configuration.

Unit tests ensure that each unique path of a business process

performs accurately to the documented specification and

contains clearly define inputs and expected results.

Integration testing: Integration tests are designed to test

integrated software components to determine if they actually

run as one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields.

Integration tests demonstrate that although the components

were individually satisfaction, as shown by successfully unit

testing, the combination of components is correct and

consistent. Integration testing is specifically aimed at

exposing the problems that arise from the combination of

components

Integration testing is of three types.

 Bottom up integration

 Top down Integration

 Sandwich Integration

Bottom up integration testing consists of unit testing

followed by system testing. Unit testing has the goal of testing

individual modules in the system. subsystem testing is

concerned with verifying the operation of the interfaces

between modules in the sub systems. Top down integration

testing starts with the main routine and one or two

immediately subordinate routine in the system structure. top

down integration requires the use of program stubs to simulate

the effects of lower levels runtimes that are called by those

being tested

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 260-268

267 | P a g e

Functional testing: Functional tests provide a systematic

demonstrations that functions tested are available as specified

by the business and technical requirements, system

documentation, and user manuals. Functional testing is

cantered on the following items:

Valid Input: identified classes of valid input must be accepted.

Invalid Input: identified classes of invalid input must be

rejected.

Functions: identified functions must be exercised.

Output: identified classes of application outputs must be

exercised.

Systems/Procedures: interfacing systems or procedures must

be invoked.

Organization and preparation of functional tests is focused

on requirements, key functions, or special test cases. In

addition, systematic coverage pertaining to identify Business

process flows; data fields, predefined processes, and

successive processes must be considered for testing. Before

functional testing is complete, additional tests are identified

and the effective value of current tests is determined.

System Test: System testing ensures that the entire

integrated software system meets requirements. It tests a

configuration to ensure known and predictable results. An

example of system testing is the configuration oriented system

integration test. System testing is based on process

descriptions and flows, emphasizing pre-driven process links

and integration points.

X. TYPES OF TESTING EMPLOYED

A. Smoke Testing

Is the process of initial testing in which tester looks for the

availability of all the functionality of the application in order

to perform detailed testing on them.

B. Regression Testing

Is one of the best and important testing. Regression testing

is the process in which the functionality, which is already

tested before, is once again tested whenever some new change

is added in order to check whether the existing functionality

remains same.

C. Static Testing

 Is the testing, which is performed on an application when it

is not been executed. Ex: GUI, Document Testing.

D. Dynamic Testing

 Is the testing which is performed on an application when it

is being executed. Ex: Functional testing.

E. Alpha Testing

 It is a type of user acceptance testing, which is conducted

on an application when it is just before released to the

customer.

F. Beta-Testing

 It is a type of UAT that is conducted on an application when

it is released to the customer, when deployed in to the real

time environment and being accessed by the real time users.

G. Compatibility Testing

It is the testing process in which usually the products are

tested on the environments with different combinations of

databases (application servers, browsers…etc) In order to

check how far the product is compatible with all these

environments platform combination.

H. Installation Testing

It is the process of testing in which the tester try to install

or try to deploy the module into the corresponding

environment by following the guidelines produced in the

deployment document and check whether the installation is

successful or not.

TEST CASES

POSITIVE TEST CASE

S .No Test case Description Actual value Expected value Result

1 Create the new user

registration process

New user created successfully To update the database

in MSACESS

True

2 Browse/Select one program Selected a program from the

folder/file

Execute the program True

3 Identify the Dependency

variables

Identified the dependency

information from the program

Shows the dependency

variables

True

4 Generate Graph. Depending on the dependency

show the graph

Show the graph True

Table 1: Positive Test Case

 NEGATIVE TEST CASE

S .No Test case Description Actual value Expected value Result

1 Create the new user

registration process

Invalid User Cannot update the data in

the database MSACESS

False

2 Browse/Select one program Cannot select a program from

the folder/file

Execution Fails False

3 Identify the Dependency

variables

Does not exist any

dependency information

Shows no dependency

variables in the program

False

4 Generate Graph. No dependency no graph Do not generate the graph False

Table 2: Negative Test Case

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 260-268

268 | P a g e

XI. RESULTS & CONCLUSION

In this research paper, we present the PPDG, a

probabilistic graphical model based on the PDG that captures

the statistical dependences among program elements and

enables the use of probabilistic reasoning to analyze program

behaviours. We also presented algorithms for two applications

of the PPDG: which uses the PPDG to rank statements to

assist in fault localization, and Fault-Comp, which uses the

PPDG to generate explanations to aid in fault comprehension.

The results also show that the PPDG can be an effective

approximate model for representing behaviours of a program

for fault diagnosis, eliminating the need to store large amounts

of execution information during debugging.

XII. FUTURE ENHANCEMENTS

The PPDG is based on the established framework of

probabilistic graphical models, which are used widely in a

variety of applications. This project presents algorithms for

constructing PPDGs and applying them to fault diagnosis. The

project also presents preliminary evidence indicating that a

PPDG-based fault localization technique compares favourably

with existing techniques. The project also presents evidence

indicating that PPDGs can be useful for fault comprehension.

REFERENCES

[1]. R. Alur, P. _Cern_y, P. Madhusudan, and W. Nam, “Synthesis

of Interface Specifications for Java Classes,” Proc. Symp.

Principles of Programming Languages, pp. 98-109, Jan. 2005.

[2]. J.F. Bowring, J.M. Rehg, and M.J. Harrold, “Active Learning

forAutomatic Classification of Software Behavior,” Proc. Int’l

Symp.Software Testing and Analysis, pp. 195-205, July 2004.

[3]. H. Cleve and A. Zeller, “Locating Causes of Program Failures,”

Proc. 27th Int’l Conf. Software Eng., pp. 342-351, May 2005.

[4]. J. Ferrante, K.J. Ottenstein, and J.D. Warren, “The Program

Dependence Graph and Its Use in Optimization,” ACM Trans.

Programming Languages and Systems, vol. 9, no. 3, pp. 319-

349, July 1987.

[5]. K.B. Gallagher and J.R. Lyle, “Using Program Slicing in

Software Maintenance,” IEEE Trans. Software Eng., vol. 17,

no. 8, pp. 751-761, Aug. 1991.

[6]. D. Heckerman, D.M. Chickering, C. Meek, R. Rounthwaite,

and C.M. Kadie, “Dependency Networks for Inference,

Collaborative Filtering, and Data Visualization,” J. Machine

Learning Research,vol. 1, pp. 49-75, 2000.

[7]. M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,

“Experiments on the Effectiveness of Dataflow and

Controlflow-Based Test Adequacy Criteria,” Proc. Int’l Conf.

Software Eng., pp. 191-200, May 1994.

[8]. J.W. Laski and B. Korel, “A Data Flow Oriented Program

Testing Strategy,” IEEE Trans. Software Eng., vol. 9, no. 3, pp.

347-354, May 1983.

[9]. W. Masri and A. Podgurski, “An Empirical Study of the

Strength of Information Flows in Programs,” Proc. 2006 Int’l

Workshop Dynamic Systems Analysis, pp. 73-80, 2006.

[10]. K. Murphy, “Dynamic Bayesian Networks: Representation,

Inference and Learning,” PhD thesis, Computer Science

Division, Univ. of California, Berkeley, 2002.

