
International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 370-375 

 

370 | P a g e  

 

COMPARATIVE ANALYSIS OF MULTIPLIER 

AND MULTIPLIER-LESS METHOD USED TO 

IMPLEMENT FIR FILTER ON FPGA 

Mahesh Golconda1, Prof. Maruti Zalte2 

Dept. of Electronics and Telecommunication Engg., 

K. J. Somaiya College of Engineering, Mumbai 

Affiliated to Mumbai University 
1mahesh.golconda@somaiya.edu 

2marutizalte@somaiya.edu 
 

 
Abstract—Finite impulse response (FIR) filters are a type of 

digital filter that has a finite impulse response which is used in 

a communication system and signal processing. FIR filter 

structure consists of a multiplier, adder, and delay element. 

The multiplier is one of the key blocks in most digital systems 

which consume high power and more area. In this paper, FIR 

filter is implemented using both Multiplier and Multiplierless 

method. In multiplier method, Modified Booth and a Modified 

Booth with Wallace tree multiplier is designed while in the 

multiplier less method, distributed arithmetic and distributed 

arithmetic with partition is designed using Verilog. The code is 

simulated in Model Sim and synthesized in Xilinx 14.7. This 

paper summarizes the comparative study of the multiplier and 

multiplier-less method based on various parameters. There is a 

trade-off between area and delay. This paper will help to 

choose the best method according to the requirement. 

 

Keywords: Distributed Arithmetic, FIR, Modified Booth, 

Wallace tree, Multiplier, Multiplier-less, Xilinx. 

 

I. INTRODUCTION 

      The filter is a circuit used to enhance some features of 

the input signal or to rejected the unwanted one. There are 

two types of filters used in DSP. One is FIR filter and 

another one is IIR filter. A FIR filter is a filter whose 

impulse response is of finite duration because it settles to 

zero in finite time. If you give input as an impulse, that is, a 

single "1" sample followed by many "0" samples, zeroes 

will come out after the "1" sample has made its way through 

the delay line of the filter. 

        The impulse response is finite because there is no 

feedback network in the FIR. Therefore, the term "finite 

impulse response" is nearly same with "no feedback". FIR 

filter offers many advantages as compared to IIR filters 

which are suited for many applications. FIR filter structures 

comprise of a multiplier, delay, and adder. In this paper, the 

emphasis is more on multiplier block. More efficient way of 

performing MAC operation is required to implement FIR  

filter on FPGA. In one method, modified version of 

traditional multipliers are used and in another method 

multiplier is replaced by multiplier-less structures. 

II. MULTIPLIERS 

      Multipliers play a crucial role in today’s DSP and 

various other applications. With advances in technology, 

many researchers have tried and are still trying to design 

multipliers which offer either of the following design targets 

– high speed, low power consumption, regularity of layout 

and less area or even combination of them in one multiplier.  

        The common multiplication method is “add and shift” 

algorithm. In multipliers, partial products are generated 

which has to be added. The addition of partial products is 

the important parameter that determines the performance of 

the multiplier. To reduce the number of partial products to 

be added, Modified Booth algorithm is one of the most 

popular algorithms. To achieve speed improvements 

Wallace Tree algorithm can be used to reduce the number of 

sequential adding stages. Further by combining both 

Modified Booth algorithm and Wallace Tree technique we 

can see the advantage of both algorithms in one multiplier. 

The basic multiplication algorithm follows the steps shown 

below 

 If the LSB of Multiplier is ‘1’, then add the 

multiplicand into an accumulator.  

 Shift the multiplier one bit to the right and 

multiplicand one bit to the left.  

 Stop when all bits of the multiplier are zero.  

           From above it is clear that the multiplication has been 

changed to the addition of numbers [1]. If the Partial 

Products are added serially then a serial adder is used. The 

parallel multiplier is used to add all the partial products 

parallelly using one combinational circuit. However, 

compression technique can also be used to reduce the 

number of partial products and to perform addition with less 

latency. 

  



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 370-375 

 

371 | P a g e  

 

A. Modified Booth Multiplier 

The Original version of Booth’s multiplier (Radix – 2) had 

two drawbacks.  

 The number of operations became variable and 

inconvenient for parallel multiplication.  

 When there are isolated 1s, the Algorithm becomes 

inefficient. 

     The above problems of Radix-2 are overcome by using 

Radix 4 Algorithm which can scan strings of three bits with 

the algorithm given below. The design of Booth’s multiplier 

in this project consists of Modified Booth Encoded (MBE), 

sign extension corrector, partial product generators and 

finally an adder [2]. This method is used to increase speed 

by reducing the number of partial products by half. Since an 

8-bit booth multiplier is used in this project, only four 

partial products need to be added instead of eight. The 

architecture of modified Booth is shown in figure 1. 

 

 
Fig.1 Modified Booth Architecture 

 

Modified Booth Encoder (MBE)  

        Modified Booth encoding is used to avoid variable size 

partial product arrays. The multiplier B  has to be converted 

into a Radix-4 number by dividing them into three digits 

respectively according to Booth Encoder Table given below. 

Before converting the multiplier, a zero is appended into the 

Least Significant Bit (LSB) of the multiplier. The multiplier 

has been fragmented  into four partitions and hence four 

partial products will be generated using modified booth 

multiplier approach instead of eight partial products being 

generated using a conventional multiplier. 

        For eg. Convert an 8-bit number into a Radix-4 

number. Let the number be -36 = 1 1 0 1 1 1 0 0. A ‘0’ has 

to be appended to the LSB. Hence the new number is 1 1 0 1 

1 1 0 0 0. Further, it is encoded into Radix-4 numbers 

according to the table I. Starting from right we have 

0*Multiplicand, -1*Multiplicand, 2*Multiplicand, -

1*Multiplicand. 

        Table 1 shows Bn+1, Bn, and Bn-1 which are three bits 

wide binary numbers of the multiplier Bin which Bn+1 is 

the most significant bit (MSB) and Bn-1 is the least 

significant bit (LSB). Zn is representing the Radix-4 number 

of the three-bit binary multiplier number. For example, if 

the three-bit multiplier value is “111”, so it means that 

multiplicand A will be 0. And it’s the same for others either 

to multiply the multiplicand by -1, -2 and so on depending 

on 3-digit number. 

 
TABLE I.  MODIFIED BOOTH ENCODER’S TABLE TO 

GENERATE M, 2M, 3M CONTROL SIGNAL 

 

Bn+1 Bn Bn-

1 

Zn Partial Products 1M 2M 3M 

0 0 0 0 0 1 1 0 

0 0 1 1 1*Multiplicand 0 1 0 

0 1 0 1 1*Multiplicand 0 1 0 

0 1 1 2 2*Multiplicand 1 0 0 

1 0 0 -2 -2*Multiplicand 1 0 1 

1 0 1 -1 -1*Multiplicand 0 1 1 

1 1 0 -1 -1*Multiplicand 0 1 1 

1 1 1 0 0 1 1 0 

 

         

Partial Product Generator (PPG)  

      Partial product generator is the combination circuit of 

the product generator and the 5 to 1 MUX circuit. By 

multiplying the multiplicand by 0, 1, -1, 2 or -2, partial 

products are produces using product generator. A 5 to 1 

MUX is designed to determine which product is chosen 

depending on the M, 2M, 3M control signal which is 

generated from the MBE. For product generator, multiply 

by zero means the multiplicand is multiplied by “0”. 

Multiply by “1” means the product remains the same as the 

multiplicand value. Multiply by “-1” means that the product 

is the two’s complement form of the number. Multiply by “-

2” is to shift left one bit the two’s complement of the 

multiplicand value and multiply by “2” means just shift left 

the multiplicand by one place. 

 

B. Modified Booth Multiplier with Wallace tree 

 

                 In this section, Modified Booth algorithm is 

combined with Wallace tree adder to observed benefits from 

both the techniques in the single multiplier. Modified Booth 

algorithm provides better area performance and Wallace tree 

benefits with reduced delay [3]. This Multiplier architecture 

comprises of two architectures, i.e., Modified Booth and 

Wallace tree. Based on literature review, we find that 

Modified Booth increases the speed because it reduces 

partial products to half. The delay in multiplier can be 

reduced by using Wallace tree. The power consumption of 

Wallace tree multiplier is also less as compared to the booth. 

So the Advantages of both the multipliers can be combined 

to produce high speed and low power multiplier. The 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 370-375 

 

372 | P a g e  

 

Wallace tree uses both Full Adder and Half Adders because 

of which it is also called as compressor tree. The final 

results are added using a Carry Look-ahead Adder. The 

architecture of this combination is shown in figure 2.  

 
Fig. 2 Modified booth with Wallace tree 

 

      

Wallace Tree Adder 

        The Wallace tree adder is used where speed factor is 

vital and used in order to produce two rows of partial 

products that can be added in the last stage. Here the 

Wallace tree is used to accelerate the accumulation of the 

partial products. Partial products are added by the carry save 

adder (CSA) and the final stage is added using carry look 

ahead (CLA) adder. CSA adder takes three inputs and 

produce sum and carry parallel. Three partial products are 

added by the CSA tree and finally when there are only two 

outputs left out, then finally CLA adder is used to produce 

the final result. In all multiplication operation product is 

obtained by adding partial products. Thus, the final speed of 

the multiplier circuit depends on the speed of the adder 

circuit and the number of partial products generated. In this 

regard, we can expect a significant reduction of time in 

computing multiplication operation using this method 

III. MULTIPLIER LESS 

        In the multiplier-less technique, the MAC operation 

done by multipliers in multiplier methods is replaced by a 

technique which doesn't use multipliers but does the same 

calculation as multiplier technique does. Several multipliers-

less techniques have been proposed. These methods can be 

classified into two types according to how they manipulate 

the filter coefficients for the MAC operation [4]. The first 

type of multiplier-less technique is the conversion-based 

approach, in which the coefficients are transformed to other 

numeric representations whose hardware implementation or 

manipulation is more efficient than the traditional binary 

representation. Example of such techniques is the Canonic 

Sign Digit (CSD) method, in which coefficients are 

represented by a combination of powers of two in such a 

way that multiplication can be simply implemented with 

adder/subtractors and shifters, and the Dempster-Mcleod 

method, which similarly involves the representation of filter 

coefficients with powers of two but in this case arranging 

partial results in cascade to introduce further savings in the 

usage of adders. The second type of multiplier-less 

technique involves the use of Look-Up Tables (LUTs) to 

store pre-computed values of coefficient operations. The 

very well-known multiplier -less technique used is 

Distributed Arithmetic. 

            Distributed arithmetic is used to implement MAC 

operation with a multiplier-less unit, where the MAC 

operations are replaced by a series of LUT access and 

summations. The basic idea in this method is to replace all 

multiplications and additions by a table and a shifter-

accumulator. DA technique is bit-serial in nature. It is a bit-

level rearrangement of the MAC operation. The basic DA is 

a computational algorithm that affords efficient 

implementation of the weighted sum of products, or dot 

product [5]. DA is a bit-serial operation used to compute the 

inner (dot) product of a constant coefficient vector and a 

variable input vector in a single direct step and is given by 

 

 Y                                                             (1) 

where, 

y - Output response 

Ak - Constant filter coefficients 

Xk - Input data 

 

Let Xk be an N-bits and can be expressed in scaled two’s 

complement number as 

  Xk = -bko + 2-n                                                                            (2) 

Substituting Xk into equation (1) 

y  [-bko + 2-n ]                              (3)                                   

y  + [  2-n] (4) 

Rearranging the summation based on power terms and then 

grouping the sum of the products, 

  y  + [b1n.A1 + b2n.A2 +……. 

bkn.Ak ] 2-n                                                                          (5) 

The final formulation, 

   y  + [  ] 2-n       (6)                            

 

A. Basic Distributed Arithmetic method 

        The DA consists of Look Up Table (LUT), Shift 

registers and scaling accumulator. In DA method, the partial 

product outcomes are pre-computed and stored in a Look-

Up Table (LUT) which is addressed by the multiplier bits. A 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 370-375 

 

373 | P a g e  

 

filter with N coefficients the LUT has 2N values. The basic 

block diagram of DA is shown in figure 3.  

 
 

Fig.3 The basic Distributed Arithmetic structure 

Distributed Arithmetic for 3rd order Filter 

Coefficients = 4, No. of inputs = 4  

LUT size = 24 = 16 memory location 

             In this method, possible outputs are pre-computed 

and stored in LUT.LUT is addressed through the input of 

the filter. For 4 tap filter, 4 tap represents the no. of the 

coefficient of the filter as well as it represents the no. of 

inputs to the filter and address bit for the LUT. 

       Table 2 shows the content of the LUT for 3rd order 

filter 
TABLE 2.CONTENTS OF THE LUT 

Address Data 

0000 0 

0001 h3 

0010 h2 

0011 h2+h3 

0100 h1 

0101 h1+h3 

0110 h1+h2 

0111 h1+h2+h3 

1000 h0 

1001 h0+h3 

1010 h0+h2 

1011 h0+h2+h3 

1100 h0+h1 

1101 h0+h1+h3 

1111 h0+h1+h2+h3 

 

     For corresponding inputs, each location of LUT is 

assigned to different outputs. The possible inputs for 3rd 

order filter are 0(0000) - 15(1111). The output is computed 

for each input using the technique shown below. 

 Input = 1011 means  

 Output = 1.h0 + 0. h1 + 1. h2 + 1.h3  

              = h0+h2+h3  

Input = 1111 means  

Output = h0+ h1+h2+h3  

Input = 0101 means  

Output = h1+h3 

 

Input = X0, X1, X2, X3  

X0 = 1011=11  

X1 = 1101=13  

X2 = 1010=10  

X3 = 1001=9  

h0 = h1 = h2 = h3 = 1 

Step 1: 

Store the values in input buffer. 

X0[0] X1[0] X2[0] X3[0] =1101 

X0[1] X1[1] X2[1] X3[1] =1010 

X0[2] X1[2] X2[2] X3[2] =0100 

X0[3] X1[3] X2[3] X3[3] =1111 

Step 2: 

Read the values from LUT for corresponding values in 

buffer. 

Output of LUT: 

O1 = 0011 = 3 

O2 = 0010 = 2 

O3 = 0001 = 1 

O4 = 0100 = 4 

 

Step 3: 

If the value is multiplied by 2, it implies left shift. 

Output = O1 + Shift the value of O2 one time + Shift the 

value of O3 2 times + Shift value of O4 3 times. 

Output = 3 + 4 + 4 + 32 = 43. 

Disadvantage 

      A filter with N coefficients the LUT has 2N values. For 

higher order filter LUT size will increase, it required more 

memory space. 

B.  Distributed Arithmetic using Partition method 

     The above DA technique holds good only when filters 

are of low order. For higher order filters, the size of the 

LUT also increases exponentially with the order of the filter. 

For a filter with N coefficients, the LUT have 2N values.  

     Therefore, for higher order filters, LUT size to be 

reduced to reasonable levels. To reduce the size, the LUT 

can be subdivided into a number of LUTs, called LUT 

partitions. Each LUT partition operates on a different set of 

filter taps. The results obtained from the partitions are 

summed.  

 

Partition method for 3rd order filter  

Number of partition = 2 

So, the number of LUT’S used are 2. Each LUT has 2 

inputs. 

Memory location = no. of partition * 2n = 2*22 = 8 locations 

n = number of inputs of LUT 

LUT is divided into LUT 1 & LUT 2. Each LUT has 2 

inputs and 4 memory location. It is shown in figure 4 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 370-375 

 

374 | P a g e  

 

Input = 1011 means 

First two bits is address bit of LUT 1, output becomes 10 = 

h0 

Remaining 2 bits are address bit of LUT 2, output becomes 

11 = h2 + h3 

Output = output of LUT1 + output of LUT 2 = h0+ h2 + h3 

 

 
Fig 4 3rd order filter with 2 Partition 

 
 Partition method for 8-tap filter  

        FIR Filter with 8-tap is used in this project. If the 

partition is not used, then the number of memory locations 

that will be used is 2^8=256 locations. So, it will be a very 

time-consuming process to write code for such large number 

of locations. So, partition method is used in this project. The 

architecture of 8 tap filter with 4 partitions is shown in 

figure 5. 

 

Fig. 5 8-tap filter with 4 partitions 

IV. RESULTS 

     After generating coefficients from MATLAB FDA tool, 

the code is written in Verilog language and simulated using 

ModelSim-Altera 6.4a. The inputs given here are 

10,44,128,64,6,51,9,2. Simulation results for all the methods 

are shown in figures below 

 

 
Fig. 6 Modified booth simulation 

 

 
Fig. 7 Modified booth with Wallace tree simulation 

 

 
Fig. 8 Distributed Arithmetic simulation 

 

 
Fig.9 Distributed Arithmetic partition simulation 

 

 



International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 3 (May-June, 2016), PP. 370-375 

 

375 | P a g e  

 

V. CONCLUSIONS 

 

     After analysing all the multiplier and multiplier-less 

methods, the comparison is made in terms of delay, slices, 

BELs, memory. Table 3 shows the comparison of different 

parameters of Modified Booth method, Modified Booth 

with Wallace tree adder method, distributed arithmetic and 

Distributed arithmetic with partition method. 

 
TABLE 3 COMPARISON TABLE OF DIFFERENT METHODS 

 
 

Methods 

Modified 

Booth 

Modified 

Booth 

with 

Wallace 

tree adder  

Distributed 

Arithmetic 

Distributed 

Arithmetic 

with 

partition 

Delay (ns) 10.221 8.957 18.235 16.854 

Slice LUTs 565 263 2532 165 

IOs 91 91 84 84 

BELs 1145 563 4060 220 

Memory 

(Kbs) 

301144 330208 409456 282656 

 

     This paper gives a clear concept of different methods 

used to implement FIR filter and their comparison based on 

delay, slices, BELS, and memory. Based on the comparison, 

we find that Modified booth with Wallace tree method has 

the least delay among all the other methods. So, it is the best 

method, if high speed is required. This method is fastest 

because of two reasons. One is a reduction of calculation of 

partial product by using modified booth algorithm and 

another reason is the use of Wallace tree adder to speed up 

the calculations. It reduces delay at the cost of a little 

increase in complexity. 

           Distributed arithmetic with a partition which is a 

multiplier-less method had a greater delay than multiplier 

methods but covers the least area. As the area is less, power 

dissipation is also less than others. The memory requirement 

for this method is also very least amongst all the methods. 

           As there is a trade-off between area and speed, this 

paper helps to make us choose a proper method according to 

the requirement.  

REFERENCES 

[1] Devika.S, S. Lokesh, H. Chandrasekhar,” FPGA 

Implementation of Low Power FIR Filter using Modified Booth 

Algorithm,” in International Journal for Research in Applied 

Science & Engineering Technology (IJRASET), Volume 3 Issue 

VI, June 2015 ISSN: 2321-9653 

 

[2] Misra Susmita,” Design and implementation of faster and low 

power Multipliers”, in International journal of science and 

Technology, Volume 3, issue 4, oct 2012, ISSN:0976-8491 

[3] Nair Savita,Saraf Ajit,Nair Swati,” Analysis of multipliers 

based on various performance measures”, in International 

journal of Engineering Research & Technology, Volume 3,Issue 

2,February 2014,ISSN : 2278-0181. 

 

[4] K. Tirupathiah, K.Rajasekhar,”The Design of FPGA 

Implementation of 16-Tap FIR filter using Improved DA 

Algorithm”, in International Journal of Computer Technology 

& Application, Volume 3, Issue 5, ISSN: 2229-6093. 

 
[5] M.Yazhini Ramesh,” FIR filter Implementation using Modified 

Distributed Arithmetic Architecture”, in Indian Journal of 

science and Technology, ISSN: 0974-5645 

 

 

 

 

 

 

 

 

 

    

    

 


