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Abstract— Based on a user’s query Web databases create 

query result pages. For many applications, such as data 

integration, which need to cooperate with multiple web 

databases there is a need to automatically extract the data from 

these query result pages .So we present a data extraction and 

alignment method called CTVS which combines both tag and 

value similarity. The data values from the same attribute are 

put into the similar column in which CTVS automatically 

extract data from query result pages by first identifying and 

segmenting the query result records (QRRs) in   query result 

pages and then align the segmented QRRs into a table. 

Specially, we advise new techniques to switch the case when the 

QRRs are not secure, which may be due to the presence of main 

information, such as a commentary, proposal or advert, and for 

handling any nested structure that may exist in the QRRs. By 

CTVS, we create novel record alignment algorithms that align 

the attributes in a record, in pair wise first and then holistically. 

Experimental l results show that CTVS achieves high precision 

and outperforms alive state-of-the-art data extraction methods. 

Index Terms—Automatic wrapper generation, data 

extraction, data record alignment, information integration, 

nested structure processing etc (key words) 

I. INTRODUCTION. 

 

ONLINE database, called web database, include pages in 

the deep web are dynamically generate in response to a user 

query submitted  through the query interface of a web 

database,which Compared with webpages in the surface web, 

that can be accessed by a unique URL. Upon receiving a 

user’s query, a web database returns the related data, either 

structured or semi structured, encoded in HTML pages. Many 

web applications need the data from multiple web databases, 

such as meta querying, data integration and comparison 

shopping. For these applications to further use the data 

embedded in HTML pages, automatic data extraction is 

necessary. Only when the data are extracted and organized in 

a structured way such as tables, they can be compared and 

aggregated. Hence, accurate data extraction is very important 

for these applications to perform correctly. 

This paper focuses on the problem of automatically extract 

data records that are encoded in the query result pages 

generate by web databases. The goal of web database data 

extraction is to eliminate any unrelated information from the 

query result page, extract the query result records (referred to 

as QRRs in this paper) from the page, and align the extracted 

QRRs into a table such that the data value  belong to the same 

characteristic are placed into the same table column. 

 The following two-step method, called combine Tag and 

Value Similarity (CTVS), to extract the QRRs from a query 

result page p. 

• Record extraction: Identifies the QRRs in p and 

involve two sub steps: data region identification and the actual 

segmentation. 

• Record alignment: Aligns the data values of the 

QRRs in p into a table so that values for the same attribute are 

aligned into the same table column. 

CTVS precisely extracts and aligns the QRRs in query 

result pages if there are at least two records in the page. 

Compared with existing data extraction methods, CTVS 

improve data pulling out precision in three ways. 

• New methods to imagine that the QRRs are existing 

contiguously in only one data region in a page. However, it is 

not best guess  be true for many web databases where 

maintain in order separate the QRRs. We scan 10 websites to 

which the QRRs in the query result pages are non-contiguous, 

but indicate that non-contiguous data regions are rather 

familiar. Furthermore, 10 out 4 of websites have non-

contiguous QRRS with the same parent in the page HTML tag 

tree. This problem is concentrate on two methods according to 

the outline of the QRRs and the major in series in the result 

HTML tag trees (i.e., DOM trees). a. An off-the-peg data 

region recognition method is likely to recognize the non-

contiguous QRRs that have the similar parents according to 

their tag similarity. b. A combine method is proposed to join 

different data regions that contain the QRRs (with or without 

the same parent) into a single. 

• In this we proposed to align the data values in the 

recognized QRRs, first pairwise then holistically. Together 

tag structure similarity and data value comparison are used in 

the pairwise alignment procedure i.e,first to join tag structure 

and data value similarity to achieve the alignment.  

• A new nested-structure dealing out algorithm is 

future to handle any nested structure in the QRRs after the 
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holistic alignment i.e, CTVS uses both tag and data value 

similarity in sequence to get better nested structure processing 

exactness.  

II. QRR EXTRACTIONS 

 

        Fig.1 shows the framework for QRR extraction. In 

this aquery result page, the Tag Tree structure module first 

construct a tag tree for the page rooted in the <HTML>tag. 

Each node correspond to a tag in the HTML page as well as 

its children are tags covered inside it. In every inner node n of 

the tag tree has a tag string tsn, which include the tags of n 

and all tags of n’s descendants, and a tag path tpn, which 

include the tags from the root to n. 

 
 

Fig.1. QRR extraction framework. 

 

A. Data Region Identification  

The Data Region Identification modules identify all likely 

data region, which usually contain dynamically generates 

data, top down starting from the root node. We first suppose 

that some child subtrees of the same parent node form alike 

data records, which assemble a data region.  Thus, we propose 

a new process applied to more web databases. The data region 

identification algorithm is apply to a node n and recursively to 

its children ni, i = 1 . . .m as follows: 

  

a) Compute the similarity computation method in the 

data region identification algorithm is recursively apply to the 

children of ni only if it does not have any alike siblings. 

Several data regions may be recognized in this. 

  

b) Section the data region into data records using the 

record segmentation algorithm.  

c) Suppose that the tag tree has n internal nodes and a 

node has a maximum of m children and a maximum tag string 

length of l. The time complexity of the data region 

identification algorithm is O(nm2l2). 

 

B.  Record Segmentation 

 The Record Segmentation module then segments the 

identified data regions into data records according to the tag 

patterns in data regions. If only one tandem replicate is create 

in a data region, we assume that each frequent instance in the 

tandem replicate corresponds to a record. If many tandem 

replicate are found in a data region, we need to select one to 

indicate the record. The two heuristics are used for the tandem 

replicate collection 

a) If there is supplementary information, which 

corresponds to nodes between record instances, within a data 

region, the tandem replicate that stops at the supplementary 

information is the correct tandem replicate since  information 

usually is not inserted into the middle of a record.  

b) The optical gap between two records in a data region 

is usually larger than any optical gap within a record. Hence, 

the tandem replicate that satisfies this restriction is selected. 

c) If the earlier two heuristics cannot be used, we select 

the tandem replicate that start the data region. 

C. Data Region Merge 

       Given the segmented data records, the Data Region 

Merge module merges the data regions contain similar 

records. If any two data regions, we treat them as similar if the 

segmented records they contain are similar. The similarity 

between any two records from two data regions is measured 

by the resemblance of their tag strings. The resemblance 

between two data regions is calculated as the average record 

similarity. Two data regions can be merged into a merged data 

region if the records in the two data regions have an average 

similarity greater or equal to 0.6. Given, that two data regions 

d1 and d2 with n1 and n2 records and most record tag string 

length of l1 and l2, Respectively, the time complexity of the 

data region merges algorithm is O(n1n2l1l2). 

 

D. Query Result Section Identification 

The Query Result Section Identification module select one 

of the merged data regions as the one that contains the QRRs, 

there may still be multiple data regions in a query result page. 

Three heuristics are used to recognize this data region, called 

the query result section. 

a) The query result section generally occupies a large 

space in the query result page. For each data region 

d,  

b) an area weight, which is calculated as d’s area 

divided by the largest area of all identified data 

regions, is assigned for d. 

c) The query result section is generally located at the 

center of the query result page. For each data region 

d, a center distance is considered among its center 

and the center of the page, and a center distance 

weight, which is calculated as the smallest center 

distance among all identified regions divided by d’s 

center distance, is assigned for d. If a merged data 

region d contains multiple regions d1,. . . . . . ,dn to 

be found in dissimilar parts of the page, then first 

find the region di that has the largest space in the 

query result page in the middle of d1,. . . , dn and 
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assume that the center distance weight of di is the 

center distance weight of d. 

d) Each QRR generally contains more raw data strings 

than the raw data strings in other sections. For each 

data region d, a value weight, which is calculate as 

the average number of raw data strings in the records 

of d divided by the largest average number of data 

values in all recognized regions, is assign for d. All 

the above three weights are summed and the data 

region that has the biggest summed weight is 

selected as the query result section. Records in this 

data region are supposed to be QRRs. 

A restriction of this approach is that if a query result page 

has more than one data region that contains query result 

records and the records in the different data regions, then we 

will choose only one of the data regions and discard the 

others. 

III. QRR ALIGNMENT 

      QRR alignment is performing by novel three-step data 

alignment methods that combine tag and value similarity. 

 

A. Pairwise QRR Alignment 

 

      The pairwise QRR alignment aligns the data values in a 

pair of QRRs to present the proof for how the data values must 

be aligned among all QRRs. A pairwise alignment of r1 and r2 

is composed of  a set of data value alignments, each of which 

assumes that the corresponding data values from r1 and r2 

belong to the same attribute. 

Every QRR includes two kinds of information: the text 

string for the ith value and the tag path for the ith value. 

Throughout the pairwise alignment, we involve that the data 

value alignments must suit the following three constraints: 

a) Same record path constraint: The record path of a data 

value f comprises the tag from the root of the record 

to the node that contains f in the tag tree of the query 

result page. Each pair of corresponding values have 

the similar tag path. Hence, if f1i has an altered tag 

path with f2j, then sij is assigned a small negative 

value to prevent the pair of values from being aligned. 

b) Unique constraint: Each data value can be aligned for 

the most part one data value from the other QRR. 

c) No cross alignment constraint: If f1i is matched to f2j, 

then there should be no data value alignment between 

f1k and f2l such that k < i and l > j or k >i and l < j. 

Based on these constraints, a dynamic programming 

algorithm aligns the two records. The similarity is 0 if one of 

the QRRs is empty or else, if f1i and f2j have the same tag 

path, then just one of the following three data value alignments 

is possible. 

1) The first (i - 1) values of r1 can be aligned with the 

first (j - 1) values of r2 plus the data value alignment 

between f1i and f2j, which has the summing similarity 

score L(i-1)(j-1) + sij. 

2) f1i can be ignored and the first (i - 1) values of r1 can 

be aligned with the first j values of r2, which has the 

summing similarity score L(i-1)j. 

3) f2j can be ignored and the first i values of r1 can be 

aligned with the first j - 1 values of r2, which has the 

summing similarity score Li(j-1). 

      The alignment with the largest summing similarity 

score among these three alternatives is chosen. That is 

Lij =  max(L(i-1)(j-1) + sij, L(i-1)j, Li(j-1)                 (1) 

 

      With this dynamic programming method, the time 

complexity of the pairwise alignment algorithm is O(l1l2) 

where l1 and l2 are the number of data values in the two QRRs. 

Hence, given a data region with n records, the time complexity 

of the pairwise alignment algorithm is O(n2l2)in which l is the 

largest number of data values in a record. 

 

i. Data Value Similarity Calculation 

 

Given two data values f1 and f2 from dissimilar QRRs, we 

need their similarity, s12, to be a real value in [0, 1]. The data 

value similarity is calculated according to the data type tree 

shown in Fig. 2.                                                                                              

 

                    

 

 

 

 

 

 

 

Fig. 2. Data type tree 

     

       Each child node is a subset of its parent node. For 

example, the “string” type includes several children data types, 

which are frequent on the web such as “datetime,” “float,” and 

“price.” The highest depth of the data type tree is 4. We will 

transfer to a nonstring data type as a specific data type. 

       Given two data values f1 and f2, we first moderator  

data types and then fit them as extremely as possible into the 

nodes n1 and n2 of the data type tree. For example, given a 

string “567,” we will put it in node “integer.” The similarity 

s12 between two data values f1 and f2 with data type nodes n1 

and n2 is defined as nonstring data type as a specific data type. 

 

          0:5                       n1 = p(n2) & n1 ≠ String OR 

s12 = {                            n2 = p(n1) & n2 ≠ String 

          1                          n1 = n2 ≠ String 

          cosine similarity   n1 = n2 = String 

          0                          otherwise, 
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where p(ni) refers to the parent node of ni in the data type 

tree. The similarity between data values f1 and f2 is 

. 0.5, if they belong to different specific data types that have 

a common parent. 

. 1, if they belong to the same specific data type. 

. string cosine similarity of f1 and f2, if both f1 and f2 

belong to the string data type. 

. 0 otherwise, which occurs when one of f1 and f2 belongs 

to the string data type and the other one belongs to a specific 

data type, or f1 and f2 belong to different specific data types 

without any direct parent. 

As Table 1 shows, data values with the same data type 

usually have larger similarity. 

 

                     TABLE 1 

      Example of Data Value Similarity 

 

 
 

 

 B. Holistic Alignment 

 

 Holistic alignment align the data values in all the QRRs 

and this step of holistic alignment performs the alignment 

worldwide with all QRRs to create a table in which all data 

values of the same attribute are aligned in the same table 

column. Thus, holistic alignment problem is equal to that of 

finding connected components  in an undirected graph. Each 

connected component of the graph represents a table column 

inside which the linked data values from different records are 

aligned vertically.  We need to consider two application 

constraints that are specific to our holistic alignment problem. 

a) Vertices from the same record are not allowed to be 

included in the same connected component as they are 

considered to come from two different attributes of 

the record. If two vertices from the same record 

breach this constraint, a path must exist between the 

two, which we call a breach path. 

b) Connected components are not allowed to intersect 

each other. If C1 and C2 are two connected 

components, then vertices in C1 should be either all 

on the left side of C2 or all on the right side of C2, 

and vice versa.  

So, we design a 3-steps for the holistic alignment problem. 

First, we traverse the graph once by a depth-first search to 

discover the preliminary connected components in the graph 

(the Traverse and Visit functions). Throughout the traversal, a 

color array is use to indicate whether every vertex has been 

visited or not (WHITE for unvisited, GRAY for under 

processing, and BLACK for processing finished). In the Visit 

function, when a new vertex is encounter, we add it into the 

current connected component. Second, At the same time we 

also mark those components containing breach paths. If a 

connected component is start containing breach paths, the 

BreakBreachPath function is called to break it by remove the 

edges with the smallest sum of pairwise similarity scores. 

Given two recognized nodes vi and vj from the same record, 

the problem of breaking a breach path is accurately the max-

flow/min-cut problem in which vi and vj are the source and 

sink nodes, respectively. Third, we traverse the components 

contain breach paths to eliminate some edges so as to break the 

breach paths (i.e., enforce the first constraint). Finally, we use a 

divide-and-conquer method to recognize and split up the 

intersecting components to inflict the second constraint. 

 

C.  Nested Structure Processing 

 

      This identifies the nested structures that exist in the 

QRRs.  If a QRR contains a nested structure such that an 

attribute has multiple values, then various of the values might 

not be aligned to any other values. Hence nested structure 

giving out identifies the data values of a QRR that are 

generated by nested structures. Relying only on HTML tags to 

recognize nested structures, as is done by approximately all 

existing methods, may incorrectly recognize a plain structure 

as a nested one. To overcome this problem, CTVS uses both 

the HTML tags and the data values to identify the nested 

structures. 

       Given an aligned table, a nested column comprises at 

least two ordered sets signifying the data values that 

aregenerated by repetitive parts in the template. A nested 

column set C is comprised of a set of nested columns.  

       Given columns cp in a holistic alignment and a 

similarity threshold Snest as input, the procedure nested 

decides, using the similarities of the data values in cp, whether 

cp contains a repetitive tag pattern that is formed by a nested 

structure. We assume that two columns are generated by the 

same attribute if there is a large data value similarity between 

these two columns. Given a column c1, which contains m data 

values, we define the intracolumn similarity simintra to be the 

average data value similarity within each column in c1. 

 

simintra =2   m(m -1)               (2) 

 

       In (2), sij is the data value similarity among the ith and 

jth data values of c1. For cp, its intracolumn similarity is the 

average of the intracolumn similarity of all columns in cp . 

       For two columns c1 and c2, which have m and n data 

values, respectively, the intercolumn similarity siminter is 

defined to be the average data value similarity of every pair of 

data values in c1 and c2 . 
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siminter =  / mn        ( 3) 

 

       In (3), sij is the data value similarity among the ith data 

values of c1 and jth data values of c2 using the data 

valuesimilarity calculation described in Section i. 

      After siminter and simintra are calculated for identified 

columns cp, if siminter=simintra > Snest, where Snest is a 

threshold that is set to 0.5, cp is assumed to be a nested column 

set, which means that the data values in it are generated from a 

nested structure. 

      Given data columns cp and the nested column set C as 

input, the method add_nested_column adds the nested columns 

cp to C. Then ci in C is replaced with cp .Otherwise, cp is 

simply added as a new element into C . 

      Given n records with a maximum of m data values and 

a maximum tag string length of l, the time complexity of the 

nested structure processing algorithm is O(nl2m2). For each 

record, at most O(l2) time is needed to identify repetitive tag 

patterns; if a pattern is found, at most O(m2) time is required to 

calculate the intra-/intercolumn similarity. compare the nested 

structure processing methods in DeLa [29] and NET [20], the 

nested structure processing technique in CTVS has the 

following advantages. 

a) CTVS processes the nested structures after the data 

records are aligned rather than before as is the case in 

DeLa and NET. The nested structure before the 

records are aligned makes them weak to optional 

attributes that makes the tag structure irregular. This 

difficulty does not arise in CTVS. 

b) In CTVS the data value similarity information 

efficiently prevents a flat structure from being 

identified as a nested structure. It shares similar tag 

structures, a flat structure by several columns having 

the same tag structure, may be wrongly identified as a 

nested structure one can have serious consequences in 

DeLa and NET. DeLa condenses all the values into 

one parent value and then aligns them to other 

records, which makes the alignment much more 

complex. If NET wrongly identifies a simple structure 

as a nested structure, it will create a new row in the 

table for each data value of the simple structure. 

 

IV.  EXPERIMENTAL RESULTS 

 

      The act of the data extraction methods is compare in 

three different ways. General data set evaluation present the act 

on the first three data sets, which display a variety of properties 

and have been used in earlier work by others. The other two 

evaluations focus on exact properties of the query result pages. 

Noncontiguous QRR evaluation compares the act for query 

result pages in which the QRRs are contiguous and non-

contiguous is shown in table 2. Nested-structure evaluation 

compare the performance for query result pages with and 

without a nested structureis shown in table 3. 

 

                             TABLE  2 

Data Extraction Performance by AUXI Data Set 

 

 
 

                           TABLE 3 

Data Extraction Achieved by NESTED Data Set 

 

 

 
 

V. RELATED WORK 

 

       In wrapper induction, extraction systems are copied 

based on inductive learning. This not scalable to a large 

number of web databases. Hence, the wrapper induction 

approach involves two additional difficult problems: 

monitoring changes in a page’s format and maintaining a 

wrapper when a page’s format changes. To conquer the 

problems of wrapper induction, some unsupervised learning 

methods, such as, IEPAD, ExAlg , DeLa , have been planned 

to repeatedly extract the data from the query result pages. To 

conquer these shortcomings, methods such as ViPER and 

ViNTs make use of extra information in the query result pages. 

      All the works make use of only the information in the 

query result pages to execute the data extraction. There are 

works that make use of extra information, specifically 

ontologies, to aid in the data extraction. While these 

approaches can overcome some of the limitations of CTVS 

(e.g., that a query result page should contain at least two 
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QRRs) and can get high accuracy, they need the availability of 

extra resources to construct an ontology as well as the 

additional step of actually constructing the ontology.  

 

VI.  CONCLUSIONS AND FUTURE DIRECTIONS 

 

We presented a new data extraction method, CTVS, to 

repeatedly extract QRRs from a query result page. CTVS 

employs two steps i.e, The first step identify and segment the 

QRRs. This improve on alive technique by allowing the QRRs 

in a data region to be non-contiguous. The second step aligns 

the data values between the QRRs. A novel alignment method 

is proposed in which the alignment is perform in three 

successive steps: pairwise alignment, holistic alignment, and 

nested structure processing.  

Although CTVS has been shown to be an correct data 

extraction method, it still suffer from some restrictions. First, it 

require at least two QRRs in the query result page. Second, any 

optional attribute that appear as the start node 

in a data region will be treat as auxiliary information. Third, 

CTVS mostly depends on tag structures to find out data values. 

Therefore, CTVS does not hold the case where multiple data 

values from more than one attribute are clustered inside one 

leaf node of the tag tree, as well as the case where one data 

value of a single element spans multiple leaf nodes. 

. 
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