
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 1, Issue 4 (sept-oct 2013), PP. 91-96

91 | P a g e

COMBINE TAG AND VALUE SIMILARITY

FOR DATA EXTRACTION AND ALIGNMENT

D.Phani Sri Lakshmi, D.N.S.B.Kavitha
Department of Computer Science Engineering

Bhimavaram, India

Abstract— Based on a user’s query Web databases create

query result pages. For many applications, such as data

integration, which need to cooperate with multiple web

databases there is a need to automatically extract the data from

these query result pages .So we present a data extraction and

alignment method called CTVS which combines both tag and

value similarity. The data values from the same attribute are

put into the similar column in which CTVS automatically

extract data from query result pages by first identifying and

segmenting the query result records (QRRs) in query result

pages and then align the segmented QRRs into a table.

Specially, we advise new techniques to switch the case when the

QRRs are not secure, which may be due to the presence of main

information, such as a commentary, proposal or advert, and for

handling any nested structure that may exist in the QRRs. By

CTVS, we create novel record alignment algorithms that align

the attributes in a record, in pair wise first and then holistically.

Experimental l results show that CTVS achieves high precision

and outperforms alive state-of-the-art data extraction methods.

Index Terms—Automatic wrapper generation, data

extraction, data record alignment, information integration,

nested structure processing etc (key words)

I. INTRODUCTION.

ONLINE database, called web database, include pages in

the deep web are dynamically generate in response to a user

query submitted through the query interface of a web

database,which Compared with webpages in the surface web,

that can be accessed by a unique URL. Upon receiving a

user’s query, a web database returns the related data, either

structured or semi structured, encoded in HTML pages. Many

web applications need the data from multiple web databases,

such as meta querying, data integration and comparison

shopping. For these applications to further use the data

embedded in HTML pages, automatic data extraction is

necessary. Only when the data are extracted and organized in

a structured way such as tables, they can be compared and

aggregated. Hence, accurate data extraction is very important

for these applications to perform correctly.

This paper focuses on the problem of automatically extract

data records that are encoded in the query result pages

generate by web databases. The goal of web database data

extraction is to eliminate any unrelated information from the

query result page, extract the query result records (referred to

as QRRs in this paper) from the page, and align the extracted

QRRs into a table such that the data value belong to the same

characteristic are placed into the same table column.

 The following two-step method, called combine Tag and

Value Similarity (CTVS), to extract the QRRs from a query

result page p.

• Record extraction: Identifies the QRRs in p and

involve two sub steps: data region identification and the actual

segmentation.

• Record alignment: Aligns the data values of the

QRRs in p into a table so that values for the same attribute are

aligned into the same table column.

CTVS precisely extracts and aligns the QRRs in query

result pages if there are at least two records in the page.

Compared with existing data extraction methods, CTVS

improve data pulling out precision in three ways.

• New methods to imagine that the QRRs are existing

contiguously in only one data region in a page. However, it is

not best guess be true for many web databases where

maintain in order separate the QRRs. We scan 10 websites to

which the QRRs in the query result pages are non-contiguous,

but indicate that non-contiguous data regions are rather

familiar. Furthermore, 10 out 4 of websites have non-

contiguous QRRS with the same parent in the page HTML tag

tree. This problem is concentrate on two methods according to

the outline of the QRRs and the major in series in the result

HTML tag trees (i.e., DOM trees). a. An off-the-peg data

region recognition method is likely to recognize the non-

contiguous QRRs that have the similar parents according to

their tag similarity. b. A combine method is proposed to join

different data regions that contain the QRRs (with or without

the same parent) into a single.

• In this we proposed to align the data values in the

recognized QRRs, first pairwise then holistically. Together

tag structure similarity and data value comparison are used in

the pairwise alignment procedure i.e,first to join tag structure

and data value similarity to achieve the alignment.

• A new nested-structure dealing out algorithm is

future to handle any nested structure in the QRRs after the

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 1, Issue 4 (sept-oct 2013), PP. 91-96

92 | P a g e

holistic alignment i.e, CTVS uses both tag and data value

similarity in sequence to get better nested structure processing

exactness.

II. QRR EXTRACTIONS

 Fig.1 shows the framework for QRR extraction. In

this aquery result page, the Tag Tree structure module first

construct a tag tree for the page rooted in the <HTML>tag.

Each node correspond to a tag in the HTML page as well as

its children are tags covered inside it. In every inner node n of

the tag tree has a tag string tsn, which include the tags of n

and all tags of n’s descendants, and a tag path tpn, which

include the tags from the root to n.

Fig.1. QRR extraction framework.

A. Data Region Identification

The Data Region Identification modules identify all likely

data region, which usually contain dynamically generates

data, top down starting from the root node. We first suppose

that some child subtrees of the same parent node form alike

data records, which assemble a data region. Thus, we propose

a new process applied to more web databases. The data region

identification algorithm is apply to a node n and recursively to

its children ni, i = 1 . . .m as follows:

a) Compute the similarity computation method in the

data region identification algorithm is recursively apply to the

children of ni only if it does not have any alike siblings.

Several data regions may be recognized in this.

b) Section the data region into data records using the

record segmentation algorithm.

c) Suppose that the tag tree has n internal nodes and a

node has a maximum of m children and a maximum tag string

length of l. The time complexity of the data region

identification algorithm is O(nm2l2).

B. Record Segmentation

 The Record Segmentation module then segments the

identified data regions into data records according to the tag

patterns in data regions. If only one tandem replicate is create

in a data region, we assume that each frequent instance in the

tandem replicate corresponds to a record. If many tandem

replicate are found in a data region, we need to select one to

indicate the record. The two heuristics are used for the tandem

replicate collection

a) If there is supplementary information, which

corresponds to nodes between record instances, within a data

region, the tandem replicate that stops at the supplementary

information is the correct tandem replicate since information

usually is not inserted into the middle of a record.

b) The optical gap between two records in a data region

is usually larger than any optical gap within a record. Hence,

the tandem replicate that satisfies this restriction is selected.

c) If the earlier two heuristics cannot be used, we select

the tandem replicate that start the data region.

C. Data Region Merge

 Given the segmented data records, the Data Region

Merge module merges the data regions contain similar

records. If any two data regions, we treat them as similar if the

segmented records they contain are similar. The similarity

between any two records from two data regions is measured

by the resemblance of their tag strings. The resemblance

between two data regions is calculated as the average record

similarity. Two data regions can be merged into a merged data

region if the records in the two data regions have an average

similarity greater or equal to 0.6. Given, that two data regions

d1 and d2 with n1 and n2 records and most record tag string

length of l1 and l2, Respectively, the time complexity of the

data region merges algorithm is O(n1n2l1l2).

D. Query Result Section Identification

The Query Result Section Identification module select one

of the merged data regions as the one that contains the QRRs,

there may still be multiple data regions in a query result page.

Three heuristics are used to recognize this data region, called

the query result section.

a) The query result section generally occupies a large

space in the query result page. For each data region

d,

b) an area weight, which is calculated as d’s area

divided by the largest area of all identified data

regions, is assigned for d.

c) The query result section is generally located at the

center of the query result page. For each data region

d, a center distance is considered among its center

and the center of the page, and a center distance

weight, which is calculated as the smallest center

distance among all identified regions divided by d’s

center distance, is assigned for d. If a merged data

region d contains multiple regions d1,. ,dn to

be found in dissimilar parts of the page, then first

find the region di that has the largest space in the

query result page in the middle of d1,. . . , dn and

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 1, Issue 4 (sept-oct 2013), PP. 91-96

93 | P a g e

assume that the center distance weight of di is the

center distance weight of d.

d) Each QRR generally contains more raw data strings

than the raw data strings in other sections. For each

data region d, a value weight, which is calculate as

the average number of raw data strings in the records

of d divided by the largest average number of data

values in all recognized regions, is assign for d. All

the above three weights are summed and the data

region that has the biggest summed weight is

selected as the query result section. Records in this

data region are supposed to be QRRs.

A restriction of this approach is that if a query result page

has more than one data region that contains query result

records and the records in the different data regions, then we

will choose only one of the data regions and discard the

others.

III. QRR ALIGNMENT

 QRR alignment is performing by novel three-step data

alignment methods that combine tag and value similarity.

A. Pairwise QRR Alignment

 The pairwise QRR alignment aligns the data values in a

pair of QRRs to present the proof for how the data values must

be aligned among all QRRs. A pairwise alignment of r1 and r2

is composed of a set of data value alignments, each of which

assumes that the corresponding data values from r1 and r2

belong to the same attribute.

Every QRR includes two kinds of information: the text

string for the ith value and the tag path for the ith value.

Throughout the pairwise alignment, we involve that the data

value alignments must suit the following three constraints:

a) Same record path constraint: The record path of a data

value f comprises the tag from the root of the record

to the node that contains f in the tag tree of the query

result page. Each pair of corresponding values have

the similar tag path. Hence, if f1i has an altered tag

path with f2j, then sij is assigned a small negative

value to prevent the pair of values from being aligned.

b) Unique constraint: Each data value can be aligned for

the most part one data value from the other QRR.

c) No cross alignment constraint: If f1i is matched to f2j,

then there should be no data value alignment between

f1k and f2l such that k < i and l > j or k >i and l < j.

Based on these constraints, a dynamic programming

algorithm aligns the two records. The similarity is 0 if one of

the QRRs is empty or else, if f1i and f2j have the same tag

path, then just one of the following three data value alignments

is possible.

1) The first (i - 1) values of r1 can be aligned with the

first (j - 1) values of r2 plus the data value alignment

between f1i and f2j, which has the summing similarity

score L(i-1)(j-1) + sij.

2) f1i can be ignored and the first (i - 1) values of r1 can

be aligned with the first j values of r2, which has the

summing similarity score L(i-1)j.

3) f2j can be ignored and the first i values of r1 can be

aligned with the first j - 1 values of r2, which has the

summing similarity score Li(j-1).

 The alignment with the largest summing similarity

score among these three alternatives is chosen. That is

Lij = max(L(i-1)(j-1) + sij, L(i-1)j, Li(j-1) (1)

 With this dynamic programming method, the time

complexity of the pairwise alignment algorithm is O(l1l2)

where l1 and l2 are the number of data values in the two QRRs.

Hence, given a data region with n records, the time complexity

of the pairwise alignment algorithm is O(n2l2)in which l is the

largest number of data values in a record.

i. Data Value Similarity Calculation

Given two data values f1 and f2 from dissimilar QRRs, we

need their similarity, s12, to be a real value in [0, 1]. The data

value similarity is calculated according to the data type tree

shown in Fig. 2.

Fig. 2. Data type tree

 Each child node is a subset of its parent node. For

example, the “string” type includes several children data types,

which are frequent on the web such as “datetime,” “float,” and

“price.” The highest depth of the data type tree is 4. We will

transfer to a nonstring data type as a specific data type.

 Given two data values f1 and f2, we first moderator

data types and then fit them as extremely as possible into the

nodes n1 and n2 of the data type tree. For example, given a

string “567,” we will put it in node “integer.” The similarity

s12 between two data values f1 and f2 with data type nodes n1

and n2 is defined as nonstring data type as a specific data type.

 0:5 n1 = p(n2) & n1 ≠ String OR

s12 = { n2 = p(n1) & n2 ≠ String

 1 n1 = n2 ≠ String

 cosine similarity n1 = n2 = String

 0 otherwise,

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 1, Issue 4 (sept-oct 2013), PP. 91-96

94 | P a g e

where p(ni) refers to the parent node of ni in the data type

tree. The similarity between data values f1 and f2 is

. 0.5, if they belong to different specific data types that have

a common parent.

. 1, if they belong to the same specific data type.

. string cosine similarity of f1 and f2, if both f1 and f2

belong to the string data type.

. 0 otherwise, which occurs when one of f1 and f2 belongs

to the string data type and the other one belongs to a specific

data type, or f1 and f2 belong to different specific data types

without any direct parent.

As Table 1 shows, data values with the same data type

usually have larger similarity.

 TABLE 1

 Example of Data Value Similarity

 B. Holistic Alignment

 Holistic alignment align the data values in all the QRRs

and this step of holistic alignment performs the alignment

worldwide with all QRRs to create a table in which all data

values of the same attribute are aligned in the same table

column. Thus, holistic alignment problem is equal to that of

finding connected components in an undirected graph. Each

connected component of the graph represents a table column

inside which the linked data values from different records are

aligned vertically. We need to consider two application

constraints that are specific to our holistic alignment problem.

a) Vertices from the same record are not allowed to be

included in the same connected component as they are

considered to come from two different attributes of

the record. If two vertices from the same record

breach this constraint, a path must exist between the

two, which we call a breach path.

b) Connected components are not allowed to intersect

each other. If C1 and C2 are two connected

components, then vertices in C1 should be either all

on the left side of C2 or all on the right side of C2,

and vice versa.

So, we design a 3-steps for the holistic alignment problem.

First, we traverse the graph once by a depth-first search to

discover the preliminary connected components in the graph

(the Traverse and Visit functions). Throughout the traversal, a

color array is use to indicate whether every vertex has been

visited or not (WHITE for unvisited, GRAY for under

processing, and BLACK for processing finished). In the Visit

function, when a new vertex is encounter, we add it into the

current connected component. Second, At the same time we

also mark those components containing breach paths. If a

connected component is start containing breach paths, the

BreakBreachPath function is called to break it by remove the

edges with the smallest sum of pairwise similarity scores.

Given two recognized nodes vi and vj from the same record,

the problem of breaking a breach path is accurately the max-

flow/min-cut problem in which vi and vj are the source and

sink nodes, respectively. Third, we traverse the components

contain breach paths to eliminate some edges so as to break the

breach paths (i.e., enforce the first constraint). Finally, we use a

divide-and-conquer method to recognize and split up the

intersecting components to inflict the second constraint.

C. Nested Structure Processing

 This identifies the nested structures that exist in the

QRRs. If a QRR contains a nested structure such that an

attribute has multiple values, then various of the values might

not be aligned to any other values. Hence nested structure

giving out identifies the data values of a QRR that are

generated by nested structures. Relying only on HTML tags to

recognize nested structures, as is done by approximately all

existing methods, may incorrectly recognize a plain structure

as a nested one. To overcome this problem, CTVS uses both

the HTML tags and the data values to identify the nested

structures.

 Given an aligned table, a nested column comprises at

least two ordered sets signifying the data values that

aregenerated by repetitive parts in the template. A nested

column set C is comprised of a set of nested columns.

 Given columns cp in a holistic alignment and a

similarity threshold Snest as input, the procedure nested

decides, using the similarities of the data values in cp, whether

cp contains a repetitive tag pattern that is formed by a nested

structure. We assume that two columns are generated by the

same attribute if there is a large data value similarity between

these two columns. Given a column c1, which contains m data

values, we define the intracolumn similarity simintra to be the

average data value similarity within each column in c1.

simintra =2 m(m -1) (2)

 In (2), sij is the data value similarity among the ith and

jth data values of c1. For cp, its intracolumn similarity is the

average of the intracolumn similarity of all columns in cp .

 For two columns c1 and c2, which have m and n data

values, respectively, the intercolumn similarity siminter is

defined to be the average data value similarity of every pair of

data values in c1 and c2 .

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 1, Issue 4 (sept-oct 2013), PP. 91-96

95 | P a g e

siminter = / mn (3)

 In (3), sij is the data value similarity among the ith data

values of c1 and jth data values of c2 using the data

valuesimilarity calculation described in Section i.

 After siminter and simintra are calculated for identified

columns cp, if siminter=simintra > Snest, where Snest is a

threshold that is set to 0.5, cp is assumed to be a nested column

set, which means that the data values in it are generated from a

nested structure.

 Given data columns cp and the nested column set C as

input, the method add_nested_column adds the nested columns

cp to C. Then ci in C is replaced with cp .Otherwise, cp is

simply added as a new element into C .

 Given n records with a maximum of m data values and

a maximum tag string length of l, the time complexity of the

nested structure processing algorithm is O(nl2m2). For each

record, at most O(l2) time is needed to identify repetitive tag

patterns; if a pattern is found, at most O(m2) time is required to

calculate the intra-/intercolumn similarity. compare the nested

structure processing methods in DeLa [29] and NET [20], the

nested structure processing technique in CTVS has the

following advantages.

a) CTVS processes the nested structures after the data

records are aligned rather than before as is the case in

DeLa and NET. The nested structure before the

records are aligned makes them weak to optional

attributes that makes the tag structure irregular. This

difficulty does not arise in CTVS.

b) In CTVS the data value similarity information

efficiently prevents a flat structure from being

identified as a nested structure. It shares similar tag

structures, a flat structure by several columns having

the same tag structure, may be wrongly identified as a

nested structure one can have serious consequences in

DeLa and NET. DeLa condenses all the values into

one parent value and then aligns them to other

records, which makes the alignment much more

complex. If NET wrongly identifies a simple structure

as a nested structure, it will create a new row in the

table for each data value of the simple structure.

IV. EXPERIMENTAL RESULTS

 The act of the data extraction methods is compare in

three different ways. General data set evaluation present the act

on the first three data sets, which display a variety of properties

and have been used in earlier work by others. The other two

evaluations focus on exact properties of the query result pages.

Noncontiguous QRR evaluation compares the act for query

result pages in which the QRRs are contiguous and non-

contiguous is shown in table 2. Nested-structure evaluation

compare the performance for query result pages with and

without a nested structureis shown in table 3.

 TABLE 2

Data Extraction Performance by AUXI Data Set

 TABLE 3

Data Extraction Achieved by NESTED Data Set

V. RELATED WORK

 In wrapper induction, extraction systems are copied

based on inductive learning. This not scalable to a large

number of web databases. Hence, the wrapper induction

approach involves two additional difficult problems:

monitoring changes in a page’s format and maintaining a

wrapper when a page’s format changes. To conquer the

problems of wrapper induction, some unsupervised learning

methods, such as, IEPAD, ExAlg , DeLa , have been planned

to repeatedly extract the data from the query result pages. To

conquer these shortcomings, methods such as ViPER and

ViNTs make use of extra information in the query result pages.

 All the works make use of only the information in the

query result pages to execute the data extraction. There are

works that make use of extra information, specifically

ontologies, to aid in the data extraction. While these

approaches can overcome some of the limitations of CTVS

(e.g., that a query result page should contain at least two

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 1, Issue 4 (sept-oct 2013), PP. 91-96

96 | P a g e

QRRs) and can get high accuracy, they need the availability of

extra resources to construct an ontology as well as the

additional step of actually constructing the ontology.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a new data extraction method, CTVS, to

repeatedly extract QRRs from a query result page. CTVS

employs two steps i.e, The first step identify and segment the

QRRs. This improve on alive technique by allowing the QRRs

in a data region to be non-contiguous. The second step aligns

the data values between the QRRs. A novel alignment method

is proposed in which the alignment is perform in three

successive steps: pairwise alignment, holistic alignment, and

nested structure processing.

Although CTVS has been shown to be an correct data

extraction method, it still suffer from some restrictions. First, it

require at least two QRRs in the query result page. Second, any

optional attribute that appear as the start node

in a data region will be treat as auxiliary information. Third,

CTVS mostly depends on tag structures to find out data values.

Therefore, CTVS does not hold the case where multiple data

values from more than one attribute are clustered inside one

leaf node of the tag tree, as well as the case where one data

value of a single element spans multiple leaf nodes.

.

REFERENCES

[1] B. Liu and Y. Zhai, “NET - A System for

ExtractingWeb Data from Flat and Nested Data Records,”

Proc. Sixth Int’l Conf. Web

Information Systems Eng., pp. 487-495, 2005.

[2] J. Wang and F.H. Lochovsky, “Data Extraction and

Label Assignment for Web Databases,” Proc. 12th World Wide

Web Conf., pp. 187-196, 2003.

[3] K. Simon and G. Lausen, “ViPER: Augmenting

Automatic Information Extraction with Visual Perceptions,”

Proc. 14th ACM Int’l Conf. Information and Knowledge

Management, pp. 381-388, 2005.

[4] Y. Zhai and B. Liu, “Structured Data Extraction from

the Web Based on Partial Tree Alignment,” IEEE Trans.

Knowledge and Data Eng., vol. 18, no. 12, pp. 1614-1628,

Dec. 2006.

[5] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu,

“Fully Automatic Wrapper Generation for Search Engines,”

Proc. 14
th
 World Wide Web Conf., pp. 66-75, 2005.

[6] M.K. Bergman, “The Deep Web: Surfacing Hidden

Value,” White Paper, BrightPlanet Corporation,

http://www.brightplanet. com/ resources/details/deepweb.html,

2001.

[7] K.C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang,

“Structured Databases on the Web: Observations and

Implications,” SIGMOD Record, vol. 33, no. 3, pp. 61-70,

2004.

[8] C.H. Chang and S.C. Lui, “IEPAD: Information

Extraction Based on Pattern Discovery,” Proc. 10th World

Wide Web Conf., pp. 681- 688, 2001.

[9] A. Arasu and H. Garcia-Molina, “Extracting Structured

Data from Web Pages,” Proc. ACM SIGMOD Int’l Conf.

Management of Data, pp. 337-348, 2003.

[10] H. Snoussi, L. Magnin, and J.-Y. Nie, “Heterogeneous

Web Data Extraction Using Ontologies,” Proc. Fifth Int’l Conf.

Agent-Oriented Information Systems, pp. 99-110, 2001.

[11] W. Su, J. Wang, and F.H. Lochovsky, “ODE:

Ontology-Assisted Data Extraction,” ACM Trans. Database

Systems, vol. 34, no. 2, article 12, p. 35, 2009.

[12] D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W.

Liddle, D.W. Lonsdale, Y.-K. Ng, and R.D. Smith,

“Conceptual-Model-Based Data Extraction from Multiple-

Record Web Pages,” Data and Knowledge Eng., vol. 31, no. 3,

pp. 227-251, 1999.

