
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 2 (March - April 2017), PP. 100-103

100 | P a g e

CASE BASED APPROACH FOR SOFTWARE

COST ESTIMATION
1 Gyanendra Singh, 2 Dr Anshu Srivastava, 3 Dr S.Q.Abbas

1Research Scholar , 2Asst Professor ,3 Professor and Director
1,2 Shri Venkateshwara University, Gajraula, UP, India.

3 AIMT Lucknow UP, India,
1 gyanendrasingh@satnacement.com, 2 anshu_qrat@yahoo.co.in, 3 qrat_abbas@yahoo.com

Abstract — Reliable and accurate software cost

estimation (SCE) is essential for effective project

management. During the past two decades, many software

cost estimation techniques are utilized to predict the cost.

A common weakness of most models is their limited

usefulness to predict the cost accurately at an early stage

of the software development life cycle. In this paper we

introduce a new cost estimation (CE) model; using the

case-based reasoning tool, a model with “just enough” of

each attribute to satisfy the desires of the system.

Index Terms — Approach for software, cost estimation

techniques.

I. INTRODUCTION

It is the intention of this work to utilize the specified

features representing the non-functional requirements i.e.

quality attributes defined by the project managers,

consequently the functional requirements since the former

affects the latter as for example, a user’s requirement not to be

obstructed by a slow system performance in conducting a task

should be translated into a requirement on transaction

throughput and as another example the web based catalogs

services which have on line payment options should be

accompanied with a secure electronic transaction payment

requirement that would acquire policies like cryptographic

controls for the protection of the information transmission, as

the basis for software cost estimation (SCE) in order to provide

enhanced and more realistic results when undertaking the cost

estimation process. Recent research has focused on the use of

analogy is searching databases . Analogy has the benefits of 1)

it is easily understood as a method, 2) it is easy to apply, and 3)

it is applicable to small and large datasets; generic, industry

specific or organization specific. Nowadays, there has been

continued and increasing attention on the quality of software

and the need to develop quality software products within cost

and time limitations became of high priority because of the

following reasons as adapted from:

1) A software product that is so unsatisfactory and

unsuitable for the purpose intended that it has to be replaced

with a new product; the company bears the cost of replacing

the software product and the cost of the new product;

2) A software product that is so difficult to learn and use or

that cannot be adapted to suit the users preferences and skills

that it results in loss of time and consequently loss of

productivity; the company bears the labor cost of the lost time;

3) A software product that has such a long learning curve

that considerable time is lost in learning to use the product; the

company bears the labor cost for the extra learning time;

4) A software product that fails frequently and requires

fixing at each failure; the company bears the amount of rework

to correct faults and the cumulative cost of doing so.

The main objectives of this work are to:

1. Identify a method for determining the software features

based on the quality attributes that can be specified and

quantified by the software project managers in the early phase

of software development;

2. Introduce a new cost estimation (CE) model; using the

case-based reasoning tool, a model with “just enough” of each

attribute to satisfy the desires of the system.

The rationale for the usage of the case-based reasoning tool

is to characterize the project for which the estimate is to be

made, relative to a number of quality attributes. This

description is then used to find other similar already finished

projects, and an estimate for the new project is made based on

the known effort values for those finished projects. Similarity

of cases is determined by the specified set of project quality

attributes which make the case different from others.

II. SOFTWARE QUALITY

"Quality comprises all characteristics and significant

features of a product or an activity which relate to the

satisfying of given requirements". "Quality is the totality of

features and characteristics of a product or a service that bears

on its ability to satisfy the given needs". "The totality of

features and characteristics of a software product that bear on

its ability to satisfy given needs: for example, conform to

specifications; The degree to which software possesses a

desired combination of attributes; The degree to which a

customer or user perceives that software meets his or her

composite expectations; The composite characteristics of

software that determine the degree to which the software in use

will meet the expectations of the customer".

Another model is the ISO/IEC 9126, which classifies

software quality into four categories and these are:

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 2 (March - April 2017), PP. 100-103

101 | P a g e

 Process quality, which is the quality of software

lifecycle processes;

 Internal quality, which is the quality of

intermediate products, including static and

dynamic models, documentation and source code;

 External quality, which is the quality of the final

system as assessed by its external behavior;

 Quality in use, which is the effect of the system in

use that is the extent to which users can achieve

their goals using the system.

According to this approach, the ISO 9126 model splits

software quality into six quality characteristics: functionality,

reliability, usability, effectiveness, maintainability and

portability. Each software quality characteristic is defined as a

set of attributes that are supported by a relevant aspect of the

software .

The advantages, or in other words, the most important

features of the model are that:

 These approach to quality evaluation decomposes

the concept of quality into a set of lower level

quality characteristics that are recognizable

properties of a product or service which refine

‘‘quality’’ into something more concrete and

measurable;

 It defines the internal and external quality

characteristics of a system, where these internal

attributes of the software influence or determine

the external attributes obtained by the end-user

and that it is generic so it can be applied to any

software product by tailoring to a specific

purpose;

 It defines a three-level (strict) hierarchical

structure of quality concepts;

 Familiar labels or single words are used to identify

each characteristic and subcharacteristic, using

terms that are commonly understood in practice;

 It consists of concise definitions, where each

characteristic and subcharacteristic is defined

using a single sentence ;

 Even evaluation procedures are defined in a

separate standard to illustrate procedures for

conducting product evaluations;

 Finally ISO/IEC 9126 is preferable because it

represents a broad consensus among researchers

and practitioners and is widely accepted and used

in practice.

“Quality” in this sense comprises some set of key

behavioral attributes, which are reliability (R), performance

(P), fault tolerance (F), safety (Sa), security (Se), availability

(A), testability (T), and maintainability (M). Software quality

(Q) is thus a function of these combined attributes plus an error

term (ε) i.e. quality would be Q = f(R, P, F, Sa, Se, A, T, M) +

ε.

If quality can change quickly relative to new threats or

changes in the operating environment, then quality is based not

only on the attribute set but also on the execution environment.

This in turn means that the environment can potentially modify

any attribute’s value for a given piece of software. Thus,

achieving quality requires weighting each attribute according

to its importance to the system into which the software will be

embedded. Each of the eight attributes is given a wi value in

the range of zero to one and place them in this linear equation:

Q = wRR +wPP + wFF + wSaSa + wSeSe + wAA + wTT +

wMM, where the sum of the weights is1.0. It is assumed that it

is a linear equation as it is believed that as long as any of those

attributes increases (i.e. be highly attained in the software

project), this consecutively improves quality as well. The

weighting for each attribute depends on the type of software.

For a financial system, the weight for security would probably

be higher than that for safety. For a safety-critical system, the

key attributes would probably be reliability, performance,

safety, fault tolerance, and availability. For an e-commerce

system, the key weighted attributes would be reliability,

performance, availability, security, and maintainability

(maintenance on these sites occurs continually).

III. JUSTIFYING THE SELECTION OF THE FOLLOWING

QUALITY ATTRIBUTES

When software is seen to exhibit undesirable behavior, the

data which is processed, the machinery on which the software

runs, and by extension the people dealing with those machines

might be negatively affected. Software errors have major

consequences, sometimes may cause loss of life such as in

aircraft flight control systems and nuclear systems. The quality

requirements needed for a software product relies on the

environment that it would implied into. The most important

attributes that should be considered at the analysis of the

project requirements are: usability, maintainability,

performance, testability, reliability, and security. This means

that a software product should possess these attributes but with

relatively different percentages of importance according to the

software classification type.

Usability: is defined as "The capability of the software

product to be understood, learned, used and attractive to the

user, when used under specified conditions". It is related to the

"set of attributes that bear on the effort needed for use, and on

the individual assessment of such use, by a stated or implied set

of users". Usability is the "effort required to learn, operate,

prepare input, and interpret output of program", "the ease with

which members of a specified set of users are able to use

something effectively.

Maintainability: is the extent to which updating the

software is facilitated to satisfy new requirements without

affecting the operability of the software system, i.e. changing

functions, correcting functions, adding and deleting functions

must be easy to accomplish. “The capability of the software

product to be modified. Modifications may include corrections,

improvements or adaptation of the software to change in

environment, and in requirements and functional

specifications", "effort required to locate and fix an error in an

operational program".

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 2 (March - April 2017), PP. 100-103

102 | P a g e

Performance: is the key attribute for a software system

applications, it expresses its functionality. It has a practical

significance as it describes the number of operations that can

be done or completed in a given period of time and the delay

between the user operation request and its completion as to

ensure the minimum number of customers and transactions that

the software system is capable of serving and dealing with

them effectively. It is "measured by evaluating processing

speed, response time, resource consumption, throughput, and

efficiency". Efficiency is "the degree to which something

effectively uses (i.e. minimizes its consumption of) its

resources. These resources may include all types of resources

such as computing (hardware, software, and network),

machinery, facilities, and personnel". Performance could not be

adequately verified without testability.

Reliability: is significant to determine the extent to which

the software system can be expected to perform its intended

functions satisfactorily under stated conditions as the reliability

parameter value greatly affects the development cost to both

the customer and the producer. This entails a time factor in that

a reliable product is expected to perform correctly over a

period of time. It cannot be evaluated in its own right; there

are related attributes to reliability, which are indeed needed to

be measured such as the mean time between failures (MTBF)

that can also be specified as the number of failures during a

given period or the failure rate, reliability increases as the

(MTBF) increases (i.e. the number of faults goes down), and

also availability of the system which is the proportion of time a

system is in a functioning condition that can be defined as the

probability that the system is operating at a specified time,

especially needed in applications such as web based.

Security: establishes how well a system resists penetrations

from outside and misuse by insiders, it concerns transcend the

boundaries of an automated system. It is defined as "the

capability of the software product to protect information and

data so that unauthorized persons or systems cannot read or

modify them and authorized persons or systems are not denied

access to them", "the availability of mechanisms that control of

protect programs and data". A secure system is a system which

does exactly what we want it to do and nothing to do even

when someone else tries to make it behave differently. Security

has to be compared and contrasted with other concepts such as:

performance, reliability because an extremely secure system

may affect the reliability of the system and its performance.

IV. NEED FOR SOFTWARE COST ESTIMATION

Cost estimating, risk analysis, project scheduling, quality

management planning and change management planning are

the five major for software project planning. Our attempt to

measure how much money, effort, resource and time will take

to make a specific software based system or product.

Estimating is important if you make a car without knowing

much you were spend the tasks you required to do it and the

time limit for the work to be completed. For that we required or

develop an estimate before we start making the software. After

survey from various papers and review report we got the

following statistics:-

1) Near about 15% of the projects get cancelled before their

completion.

2) Successful project rate is about 34% i.e. it gets

completed on time and on budget.

3) 20-25% projects don’t meet Return on Investment.

4) Directly or indirectly approx 20% get failed at the initial

phase.

V. CASE BASED REASONING APPROACH FOR SOFTWARE

COST ESTIMATION

Case based reasoning is a method of machine learning that

seeks to emulate human recollection and adaptation of past

experiences in order to find solutions to current problems. That

is, as humans we tend to base our decisions not on complex

reductive analysis, but on an instantaneous survey of past

experiences ; i.e., we don’t think, we remember. CBR is purely

based on this direct adaptation of previous cases based on the

similarity of those cases with the current situation. Having said

that, a CBR based system has no dedicated world model logic,

rather that model is expressed through the avail-able past cases

in the case cache. This cache is continuously updated and

appended with additional cases.

Aamodt & Plaza describe a 4-step general CBR cycle,

which consists of:

1) Retrieve: Find the most similar cases to the target

problem.

2) Reuse: Adapt our actions conducted for the past cases to

solve the new problem.

3) Revise: Revise the proposed solution for the new

problem and verify it against the case base.

4) Retain: Retain the parts of current experience in the case

base for future problem solving.

VI. ACCURACY IMPROVEMENT FOR COST ESTIMATION

Cost estimation is a critical issue for software

organizations. The need is to get the best estimate when

planning a new project. Improving the prediction capability of

software organizations is a way of improving their competitive

advantage. Prediction is a major task when trying to better

manage resources, mitigate the project risk, and deliver

products on time, on budget and with the required features and

functions. Estimates can help us make decisions that are more

informed if, and only if, they can rely on the results to be

accurate. If the results are accurate if it is reliable (correct) and

valid (stable). Better estimates can be obtained by improving

the estimation model. An estimation model is composed of

some input variables (explanatory or independent variables),

one output variable (the estimate or the dependent variable),

and a function that calculates the outputs from the inputs.

There are many ways of improving the estimates. For instance,

we can choose:

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com, Volume 5, Issue 2 (March - April 2017), PP. 100-103

103 | P a g e

1) a better function (e.g., the one that describes more

appropriately the relationship between inputs and output),

and/or

2) more explanatory input variables. In the former case, we

can choose the type of function, e.g., linear or logarithmic that

fits best.

In fact, a more parsimonious model (with fewer

parameters) is preferable to one with more parameters because

the former is able to provide better estimates with the same

number of observations. This task can be performed in many

ways, e.g., shrinking the input set into an equivalent pattern or

removing irrelevant variables (e.g., stepwise methods). We can

use Curvilinear Component Analysis (CCA) as a input

shrinkage technique, which produces (shrunken) data sets

where we apply ordinary least squares (OLS)

VII. DEVELOPMENT OF A CASE BASED REALISTIC MODEL

FOR COST ESTIMATION OF ANY SOFTWARE

Software cost estimation steps

Software cost estimation process involves basic seven

steps:-

1) Demonstrating the specific goals.

2) Generating a sketch for required data and resources.

3) Gathering the software requirements.

4) Checking the feasibility of the software.

5) Using various cost estimation techniques to estimate the

cost.

6) Balancing different estimates and restate the process.

7) Monitoring the estimated output and carry out the above

steps.

This is a set of techniques and procedures that is used to

derive the software cost estimate by using set of inputs to the

process and then it will generate the outputs based on the given

inputs.

CONCLUSION

Accurate software cost and schedule estimation are essential

for software project success. Often it referred to as the "black

art" because of its complexity and uncertainty, software

estimation is not as difficult or puzzling as people think. In

fact, generating accurate estimates is straightforward-once you

understand the intensity of uncertainty and framework for the

modeling process. The mystery to successful software

estimation-distilling academic information and real-world

experience into a practical guide for working software

professionals. A proven set of procedures, understandable

formulas, and heuristics that individuals and development

teams can apply to their projects to help achieve estimation

proficiency with choose appropriate development approaches

First, the estimate of the size is converted into an estimate in

nominal man-months of effort. As this nominal effort takes no

advantage of knowledge concerning the specific characteristics

of the software product, the way the software-product will be

developed and the production means, a number of cost

influencing factors (cost drivers) are added to the model. The

effect of these cost drivers must be estimated. This effect is

often called a productivity adjustment factor. Application of

this correction factor to the nominal estimation of effort

provides a more realistic estimate.

REFERENCES

[1] Thibodeau, Robert. An Evaluation of Software Cost Estimating

Models. Huntsville AL: General Research Corporation, 1981.

[2] IIT Research Institute. Test Case Study: Evaluating the Cost of

Ada Software Development. Langham MD: IIT Research

Institute, 1989.

[3] Bernheisel, Wayne A., "Calibration and Validation of the

COCOMO II.1997.0 Cost/Schedule Estimating Model to the

Space and Missile Systems Center Database." Unpublished

masters thesis. Dayton, OH, Air Force Institute of Technology.

1997.

[4] Ram D. J. and S. V. G. K. Raju, “Object Oriented Design

Function Points”, IEEE , The First Asia-Pacific Conference on

Quality Software (APAQS'00), October 2000, pp. 121

[5] Sneed, H., “Estimating the development costs of object oriented

software”, in: Proceeding of 7th European software control and

metrics conference, 1996 ,Wilmslow, UK.

[6] Mehler, H. and A. Minkiewicz, “Estimating Size for object

oriented

[7] G. Teologlou. Measuring object oriented software with

predictive object points. In 10th Conference on European

Software Control and Metrics, May 1999. Available at

http://www.escom.co.uk/publications. software”, in: Proceeding

of ASM’97 Application in Software measurement, Berlin, 1997.

[8] Caldiera, G. , G. Antoniol, R. Fiutem, C. Lokan,” Definition and

Experimental Evaluation of Function Points for Object-Oriented

Systems”,IEEE, 5th. International Symposium on Software

Metrics , March 1998, pp. 167.

