
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 88-93

88 | P a g e

ϵ-DIFFERENTIAL PRIVACY MODEL FOR

VERTICALLY PARTITIONED DATA TO

SECURE THE PRIVATE DATA RELEASE
K.Samhita, M.Sannihitha, G.Sri Sneha Varsha, Y.Rohitha

sannihithamuppidi@gmail.com

Abstract- Protecting the private data from publishing has

become a requisite in today's world of data. This solves the

problem of divulging the sensitive data when it is mined.

Amongst the prevailing privacy models, ϵ-differential privacy

outfits one of the strongest privacy guarantees. In this paper,

we address the problem of private data publishing on vertically

partitioned data, where different attributes exist for same set of

individuals. This operation is simulated between two parties. In

specific, we present an algorithm with differentially private

data release for vertically partitioned data between two parties

in the semi-honest adversary model. First step towards

achieving this is to present a two party protocol for exponential

mechanism. By the same token, a two-party algorithm that

releases differentially private data in a secure way following

secure multiparty computation is implemented. A set of

investigational results on the real-life data indicate that the

proposed algorithm can effectively safeguard the information

for a data mining task.

Key words: Differential privacy, vertically partitioned data,

secure multiparty computation, exponential mechanism, two

party algorithm

I. INTRODUCTION

Significant progress in the communication and the

storage systems emerged into large data sets. Efficient

warehousing and manipulation of these large data sets are of

paramount importance today. This made the database a

commonplace in all the fields. Each anonymous entity owns

a database like student data by an institution, employee data

by an organization and medical data by a hospital. Mass

appeal of the new paradigms like cloud computing increased

the dispensing of data amongst multiple entities. Such data

can be integrated to provide a unified view of the data

assets, make data more available and to enable better

analysis. For instance, enterprise data can be integrated to

minimize the inconsistent data, lessen the redundant data

and to lessen the interface software. However, none of the

participating entities should obtain information more than

necessary through data integration. Also, adversaries should

not misemploy the new knowledge resulted from the

integration of data as this might lead to the divulging of the

sensitive information which was not available prior to the

data integration. In this paper, we propound an algorithm to

securely integrate the data from two parties(two data

providers) preserving the personally identifiable sensitive

data from publishing, whereby the new data still keep hold

of the critical information required in the data mining tasks.

Example:

The National Association of Health Data Organizations

(NAHDO) reported that 37 states in the USA have

legislative mandates to collect hospital level data and that 17

states have started collecting ambulatory care data from

hospitals, physicians offices, clinics, and so forth [2]. The

leftmost circle in Figure 1 contains a subset of the fields of

information, or attributes, that NAHDO recommends these

states collect; these attributes include the patient’s ZIP code,

birth date, gender, and ethnicity. In Massachusetts, the

Group Insurance Commission (GIC) is responsible for

purchasing health insurance for state employees. GIC

collected patient-specific data with nearly one hundred

attributes per encounter along the lines of the those shown in

the leftmost circle of Figure 1 for approximately 135,000

state employees and their families. Because the data were

believed to be anonymous, GIC gave a copy of the data to

researchers and sold a copy to industry. For twenty dollars I

purchased the voter registration list for Cambridge

Massachusetts and received the information on two

diskettes. The rightmost circle in Figure 1 shows that these

data included the name, address, ZIP code, birth date, and

gender of each voter. This information can be linked using

ZIP code, birth date and gender to the medical information,

thereby linking diagnosis, procedures, and medications to

particularly named individuals.

For example, William Weld was governor of Massachusetts

at that time and his medical records were in the GIC data.

Governor Weld lived in Cambridge Massachusetts.

According to the Cambridge Voter list, six people had his

particular birth date; only three of them were men; and, he

was the only one in his 5-digit ZIP code.

Figure 1 Linking to re-identify data

The example above provides a demonstration of re-

identification by directly linking (or “matching”) on shared

attributes. The work presented in this paper shows that

altering To prevent such linking attacks, Jiang and Clifton

and Mohammed et al. have proposed algorithms that enable

two parties to integrate their data satisfying the k-anonymity

privacy model. The k-anonymity model requires that an

individual should not be personally identifiable from a group

of size smaller than k based on the quasi-identifier (QID),

where QID is a set of attributes that may serve as an

identifier in the data set. Later to recover the loop holes of

the K-anonymity principal, l-diversity principal was

introduced. L-diversity requires that every QID group

should contain at least “well-represented” values for the

sensitive attribute. Similarly, there are a number of other

partition-based privacy models such as (-anonymity, (c,

mailto:sannihithamuppidi@gmail.com

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 88-93

89 | P a g e

k)-safety, and t-closeness that differently model the

adversary and have different assumptions about her

background knowledge. However, recent research has

indicated that these privacy models are vulnerable to various

privacy attacks and provide insufficient privacy protection.

In this paper, we adopt differential privacy, a recently

proposed privacy model that provides a provable privacy

guarantee. Differential privacy is a rigorous privacy model

that makes no assumption about an adversary’s background

knowledge. A differentially private mechanism ensures that

the probability of any output (released data) is equally likely

from all nearly identical input data sets and, thus, guarantees

that all outputs are insensitive to any individual’s data. In

other words, an individual’s privacy is not at risk because of

the participation in the data set. In this paper, we present an

algorithm for differentially private data release for vertically

partitioned data between two parties. We take the single-

party algorithm for differential privacy that has been

recently proposed by Mohammed et al as a basis and extend

it to the two party setting. Additionally, the proposed

algorithm satisfies the security definition of the semi-honest

adversary model. In this model, parties follow the algorithm

but may try to deduce additional information from the

received messages. Therefore, at any time during the

execution of the algorithm, no party should learn more

information about the other party’s data than what is found

in the final integrated table, which is differentially private.

The main contribution of our paper can be summarized as

follows:

We present a two-party protocol for the exponential

mechanism. We use this protocol as a sub-protocol of our

main algorithm, and it can also be used by any other

algorithm that uses the exponential mechanism in a

distributed setting. We implement the first two-party data

publishing algorithm for vertically partitioned data that

generate an integrated data table satisfying differential

privacy. The algorithm also satisfies the security definition

in the secure multiparty computation (SMC) literature. The

rest of the paper is organized as follows: In Section2, we

present an overview of ϵ-differential privacy. In section3,

we talked about Vertical partitioning of the data in brief. In

Section 4, we briefly review the security multiparty

computation definition. In Section 5, we describe the two-

party protocol for the exponential mechanism. The

implementation of two-party data publishing algorithm for

vertically partitioned data is presented in Section 6.

II. DIFFERENTIALLY PRIVACY

Differential privacy will take the view that it was not,

with the rationale that the impact on the smoker is the same

independent of whether or not he was in the study. It is the

conclusions reached in the study that affect the smoker, not

his presence or absence in the data set. Differential privacy

ensures that the same conclusions, for example, smoking

causes cancer, will be reached, independent of whether any

individual opts into or opts out of the data set. Specifically,

it ensures that any sequence of outputs (responses to

queries) is “essentially” equally likely to occur, independent

of the presence or absence of any individual. Here, the

probabilities are taken over random choices made by the

privacy mechanism (something controlled by the data

curator), and the term “essentially” is captured by a

parameter. A smaller will yield better privacy (and less

accurate responses). Differential privacy is a definition, not

an algorithm. For a given computational task T and a given

value of " there will be many differentially private

algorithms for achieving T in an "-differentially private

manner. Some will have better accuracy than others. When "

is small, finding a highly accurate "-differentially private

algorithm for T can be difficult, much as finding a

numerically stable algorithm for a specific computational

task can require effort.

Definition: A randomized function K gives ϵ-differential

privacy if for all data sets D1 and D2 differing on at most

one element, and all S Є Range(K),

 Pr[K(D1) Є S] ≤ exp(ϵ) × Pr[K(D2) Є S] (1)

A mechanism K satisfying this definition addresses

concerns that any participant might have about the leakage

of her personal information x: even if the participant

removed her data from the data set, no outputs (and thus

consequences of outputs) would become significantly more

or less likely. For example, if the database were to be

consulted by an insurance provider before deciding whether

or not to insure Terry Gross, then the presence or absence of

Terry Gross in the database will not significantly affect her

chance of receiving coverage. This definition extends to

group privacy as well. A collection of c participants might

be concerned that their collective data might leak

information, even when a single participant’s does not.

Using this definition, we can bound the dilation of any

probability by at most exp(ϵc), which may be tolerable for

small c. Note that we specifically aim to disclose aggregate

information about large groups, so we should expect privacy

bounds to disintegrate with increasing group size.

A. Achieving Differential Privacy

We now describe a concrete interactive privacy

mechanism achieving є-differential privacy. The mechanism

works by adding appropriately chosen random noise to the

answer a = f(X), where f is the query function and X is the

database; thus the query functions may operate on the entire

database at once. It can be simple – eg, “Count the number

of rows in the database satisfying a given predicate” – or

complex – eg, “Compute the median value for each column;

if the Column 1 median exceeds the Column 2 median, then

output a histogram of the numbers of points in the set S of

orthants, else provide a histogram of the numbers of points

in a different set T of orthants.”

Note that the complex query above (1) outputs a vector

of values and (2) is an adaptively chosen sequence of two

vector-valued queries, where the choice of second query

depends on the true answer to the first query. Although

complex, it is solely a function of the database. We handle

such queries in Theorem. For example, suppose the

adversary first poses the query “Compute the median of

each column,” and receives in response noisy versions of the

medians. Let M be the reported median for Column 1 (so M

is the true median plus noise). The adversary may then pose

the query: “If M exceeds the true median for Column 1 (ie,

if the added noise was positive), then . . . else . . .” This

second query is a function not only of the database but also

of the noise added by the privacy mechanism in responding

to the first query; hence, it is adaptive to the behaviour of

the mechanism.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 88-93

90 | P a g e

B. Exponential Noise and the L1-Sensitivity

We will achieve є-differential privacy by the addition of

random noise whose magnitude is chosen as a function of

the largest change a single participant could have on the

output to the query function; we refer to this quantity as the

sensitivity of the function.

Definition: For f : D → Rd, the L1-sensitivity of f is

∆f = ║f(D1) − f(D2) ║ (2)

for all D1,D2 differing in at most one element.

For many types of queries ∆f will be quite small. In

particular, the simple counting queries (“How many rows

have property P?”) have ∆f ≤ 1. Our techniques work best –

ie, introduce the least noise – when ∆f is small. Note that

sensitivity is a property of the function alone, and is

independent of the database.

The privacy mechanism, denoted Kf for a query function f,

computes f(X) and adds noise with a scaled symmetric

exponential distribution with variance σ2 (to be determined

in the Theorem below in each component, described by the

density function

Pr[Kf(X)=a] exp(−║f(X) − a║1/σ) (3)

This distribution has independent coordinates, each of which

is an exponentially distributed random variable. The

implementation of this mechanism thus simply adds

symmetric exponential noise to each coordinate of f(X).

Theorem: For f : D → Rd, the mechanism Kf gives (∆f/σ)-

differential privacy.

Proof: Starting from (3), we apply the triangle inequality

within the exponent, yielding for all possible responses

Pr[Kf (D1)=r]≤Pr[Kf (D2) = r]×exp(║f(D1) − f(D2)║ / σ)

 (4)

The second term in this product is bounded by exp(∆f/σ), by

the definition of ∆f. Thus (1) holds for singleton sets S =

{a}, and the theorem follows by a union bound.

Theorem describes a relationship between ∆f, σ, and the

privacy differential. To achieve є-differential privacy, one

must choose σ ≥ є /∆f.

The importance of choosing the noise as a function of the

sensitivity of the entire complex query is made clear by the

important case of histogram queries, in which the domain of

data elements is partitioned into some number k of classes,

such as the cells of a contingency table of gross shoe sales

versus geographic regions, and the true answer to the query

is the k-tuple of the exact number of database points in each

class. Viewed naively, this is a set of k queries, each of

sensitivity 1, so to ensure є-differential privacy it follows

from k applications of Theorem (each with d = 1) that it

suffices to use noise distributed according to a symmetric

exponential with variance k/є in each component. However,

for any two databases D1 and D2 differing in only one

element, ||f(D1) − f(D2)|| = 1, since only one cell of the

histogram changes, and that cell only by 1. Thus, we may

apply the theorem once, with d = k and ∆f = 1, and find that

it suffices to add noise with variance 1/є rather than d/є.

III. VERTICALLY PARTITIONED DATA

Data is said to be vertically partitioned when several

organizations own different attributes of information for the

same set of entities. Thus, vertical partitioning of data can

formally be defined as follows: First, define a dataset D in

terms of the entities for which the data are collected and the

information that is collected for each entity. Thus, D ≡ (E,

I), where E is the entity set for whom information is

collected and I is the feature set that is collected. Assume

that there are k different sites, P1,...,Pk collecting datasets

D1 ≡ (E1, I1),...,Dk ≡ (Ek,Ik) respectively. Therefore, data

is said to be vertically partitioned if E = ∩iEi = E1∩...∩Ek,

and I = UiIi = I1U...UIk. In general, distributed data can be

arbitrarily partitioned. Vertical partitioning can also be

defined as a special case of arbitrary partitioning, where all

of the partitions consist of information about the same set of

entities.

A. Vertically Partitioning

A common form of vertical partitioning is to split

dynamic data (slow to find) from static data (fast to find) in

a table where the dynamic data is not used as often as the

static. Creating a view across the two newly created tables

restores the original table with a performance penalty,

however performance will increase when accessing the

static data e.g. for statistical analysis.

Like horizontal partitioning, vertical partitioning lets

queries scan less data. This increases query performance.

For example, a table that contains seven columns of which

only the first four are generally referenced may benefit from

splitting the last three columns into a separate table.

Vertical partitioning should be considered carefully, because

analyzing data from multiple partitions requires queries that

join the tables. Vertical partitioning also could affect

performance if partitions are very large.

Partitioning is important for the following reasons:

 For easy management

 To assist backup/recovery

 To enhance performance.

 For Easy Management

The fact table in a data warehouse can grow up to hundreds

of gigabytes in size. This huge size of fact table is very hard

to manage as a single entity. Therefore it needs partitioning.

 To Assist Backup/Recovery

If we do not partition the fact table, then we have to load the

complete fact table with all the data. Partitioning allows us

to load only as much data as is required on a regular basis. It

reduces the time to load and also enhances the performance

of the system.

Note: To cut down on the backup size, all partitions other

than the current partition can be marked as read-only. We

can then put these partitions into a state where they cannot

be modified. Then they can be backed up. It means only the

current partition is to be backed up.

 To Enhance Performance

By partitioning the fact table into sets of data, the query

procedures can be enhanced. Query performance is

enhanced because now the query scans only those partitions

that are relevant. It does not have to scan the whole data.

Vertical partitioning can be performed in the following two

ways:

 Normalization

 Row Splitting

 Normalization

Normalization is the standard relational method of database

organization. It is a process of removing redundant columns

from a table and putting them in secondary tables that are

linked to the primary table by primary key and foreign key

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 88-93

91 | P a g e

relationships. It also involves this splitting of columns

across tables, but vertical partitioning goes beyond that and

partitions columns even when already normalized.

Take a look at the following tables that show how

normalization is performed.

P_id Qty Sales

date

Store

id

Store

name

Location

30 5 3-8-13 16 Sunny Bangalore

35 4 3-9-13 16 Sunny Bangalore

40 5 3-9-13 64 San Mumbai

45 7 3-9-13 16 Sunny Bangalore

Table 1: Table before Normalization

Store_id Store_name Location

16 Sunny Bangalore

64 San Mumbai

P_id Qty Sales_date Store_id

30 5 3-8-13 16

35 4 3-9-13 16

40 5 3-9-13 64

45 7 3-9-13 16

Table 2: Table after Normalization

 Row Splitting

Row splitting tends to leave a one-to-one map between

partitions. The motive of row splitting is to speed up the

access to large table by reducing its size. Row splitting

divides the original table vertically into tables with fewer

columns. Each logical row in a split table matches the same

logical row in the other tables as identified by a UNIQUE

KEY column that is identical in all of the partitioned tables.

For example, joining the row with ID 712 from each split

table re-creates the original row.

IV. SECURE MULTIPARTY COMPUTATION

The aim of secure multiparty computation is to enable

parties to carry out such distributed computing tasks in a

secure manner. The setting of secure multiparty computation

encompasses tasks as simple as coin-tossing and broadcast,

and as complex as electronic voting, electronic auctions,

electronic cash schemes, contract signing, anonymous

transactions, and private information retrieval schemes.

Consider for a moment the tasks of voting and auctions. The

privacy requirement for an election protocol ensures that no

parties learn anything about the individual votes of other

parties; the correctness requirement ensures that no coalition

of parties has the ability to influence the outcome of the

election beyond simply voting for their preferred candidate.

Likewise, in an auction protocol, the privacy requirement

ensures that only the winning bid is revealed (if this is

desired); the correctness requirement ensures that the

highest bidder is indeed the winning party (and so the

auctioneer, or any other party, cannot bias the outcome).

Due to its generality, the setting of secure multiparty

computation can model almost every cryptographic

problem. A number of different definitions have been

proposed and these definitions aim to ensure a number of

important security properties that are general enough to

capture most (if not all) multiparty computation tasks. We

now describe the most central of these properties:

 Privacy: No party should learn anything more than

its prescribed output. In particular, the only information that

should be learned about other parties' inputs is what can be

derived from the output itself. For example, in an auction

where the only bid revealed is that of the highest bidder, it is

clearly possible to derive that all other bids were lower than

the winning bid. However, this should be the only

information revealed about the losing bids.

 Correctness: Each party is guaranteed that the

output that it receives is correct. To continue with the

example of an auction, this implies that the party with the

highest bid is guaranteed to win, and no party including the

auctioneer can alter this.

 Independence of Inputs: Corrupted parties must

choose their inputs independently of the honest parties'

inputs. This property is crucial in a sealed auction, where

bids are kept secret and parties must ¯x their bids

independently of others. We note that independence of

inputs is not implied by privacy. For example, it may be

possible to generate a higher bid without knowing the value

of the original one. Such an attack can actually be carried

out on some encryption schemes (i.e., given an encryption of

$100, it is possible to generate a valid encryption of $101,

without knowing the original encrypted value).

 Guaranteed Output Delivery: Corrupted parties

should not be able to prevent honest parties from receiving

their output. In other words, the adversary should not be able

to disrupt the computation by carrying out a \denial of

service" attack.

 Fairness: Corrupted parties should receive their

outputs if and only if the honest parties also receive their

outputs. The scenario where a corrupted party obtains output

and an honest party should not be allowed to occur. This

property can be crucial, for example, in the case of contract

signing. Specifically, it would be very problematic if the

corrupted party received the signed contract and the honest

party did not.

Symbolically, Secured Multiparty Computation is defined as

Let f : {0,1}* × {0,1}*→{0,1}*×{0,1}* be a probabilistic

polynomial-time functionality, where f1(x,y) (f2(x; y),

respectively) denotes the first (second, respectively) element

of f(x,y). Let Π be a two-party protocol for computing f. Let

the view of the first (second, respectively) party during an

execution of protocol Π on (x, y) denoted (,

respectively) be (x,r1,m1, . . .,mt) ((y,r2,m1, . .

.,mt),respectively), where r1 represents the outcome of the

first (r2 the second, respectively) party’s internal coin tosses

and mi represents the ith message the first (second,

respectively) party has received. The output of the first

(second, respectively) party during an execution of Π on

(x,y) denoted (x, y) ((x, y), respectively) is

implicit in the party’s view of the execution. We say that Π

securely computes f if there exist probabilistic polynomial

time algorithms denoted S1 and S2 such that

{(S1(x,f1(x,y)), f2(x; y))}x,yϵ{0,1}

 {((x,y), (x,y))}x;y2ϵ{0,1}*

{(f1(x,y),S2(x, f1(x; y)))}x;yϵ{0,1}*

 {((x,y), (x,y))} x;yϵ{0,1}* ,

where denotes computational indistinguishability.

Two probability distributions are computationally

indistinguishable if no efficient algorithm can tell them

apart. Namely, the output distribution of every efficient

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 88-93

92 | P a g e

algorithm is oblivious whether the input is taken from the

first distribution or from the second distribution [20]. Many

of the protocols, as in the case of the proposed algorithm in

this paper, involve the composition of secure subprotocols in

which all intermediate outputs from one subprotocol are

inputs to the next subprotocol. These intermediate outputs

are either simulated given the final output and the local input

for each party or computed as random shares. Random

shares are meaningless information by themselves.

However, shares can be combined to reconstruct the result.

Using the composition theorem [21], it can be shown that if

each subprotocol is secure, then the resulting composition is

also secure.

V. TWO-PARTY PROTOCOL FOR

EXPONENTIAL MECHANISM

In this section, we present a two-party protocol for the

exponential mechanism together with a detailed analysis.

The exponential mechanism chooses a candidate that is

close to optimum with respect to a utility function while

preserving differential privacy. In the distributed setting, the

candidates are owned by two parties and, therefore, a secure

mechanism is required to compute the same output while

ensuring that no extra information is leaked to any party.

A. Distributed Exponential Mechanism (DistExp)

The distributed exponential mechanism presented in

Algorithm1 takes the following items as input:

1.Finite discrete alternatives {(v1, u1), . . . , (vn, un)}, where a

pair (vi, ui) is composed of the candidate vi and its score ui.

Parties P1 and P2 own (v1, u1), . . . ,(vj, uj) and (vj+1, uj+1) . . .

(vn, un), respectively.

2.Privacy budget ϵ.

Algorithm 1 Distributed Exponential Mechanism
Input: Candidate-score pairs ((v1; u1), . . . , (vn, un)

owned by the parties, and the privacy budget ϵ

Output: Winner w

1: P1 evaluate s1 ←

2: P2 evaluates s2 ←

3: P1 and P2 execute RVP to compute random shares

R1 and R2, where (R1 + R2) ϵ (S1+S2);

4: for k=1 to n do

5: if k ≤ j then6: P1 evaluates L1← ;

7: P2 evaluates L2 ←0;

8: else

9: P1 evaluates L1← ;

10: P2 evaluates L2← ;

11: end if

12: P1 and P2 execute COMPARISON(R1;R2; L1; L2);

13: if b= 0 then

14: w ←vk;

15: return w;

16: end if

17: end for

Algorithm 2 Comparision

Input: Random shares R1 and R2, and values L1 and L2

Output: b

1: R = add(R1,R2);

2: L = add(L1, L2);

3: b = compare(R,L);

4: return b;

The protocol outputs a winner candidate depending on its

score using the exponential mechanism. The scores of the

candidates can be calculated using different utility functions.

Given the scores of all the candidates, exponential

mechanism selects the candidate vj with the following

probability, where Δu is the sensitivity of the chosen utility

function:

 (5)

The distributed exponential mechanism can be summarized

as follows:

Computing(3): Consider an interval [0,1] partitioned into

segments as per the probability mass defined in (5) for the

candidates. Now, we sample a random number uniformly in

the same range and the partition in which the random

number falls determines the winner candidate. Since we are

not aware of any secure division scheme that fits the

situation, we solve this in a different way. We partition the

interval [0,] into n segments, where each

segment corresponds to a candidate vi and has a subinterval

of length exp and the sampling procedure is carried out

like the earlier which determines the winner candidate.

Selecting the random number: Sampling the random

number is carried out using Random Value protocol(RVP).

Each party first computes individually exp() for its

candidates. Then both P1 and P2 compute s1=

and s2= , respectively. P1 and P2 need to pick

up a random number in the range [0,s1+s2] where

s1+s2= . This can be achieved by RVP. It takes

s1 and s2 from the parties as inputs and outputs R1and R2 to

the parties respectively, where R=R1+R2

VI. IMPLEMENTATION OF TWO-PARTY

DIFFERENTIALLY PRIVATE DATA RELEASE

ALGORITHM

The basic idea is to anonymize the data by a sequence

of specializations starting from the root or the topmost

general state. The specialization process is splitting the

taxonomy tree downwards where the child values replace

that of the parents'. It is an iterative process. Each iteration

of the specialization process selects a winner candidate

using the distributed exponential mechanism (Algorithm 1)

which is owned by either of the parties. Winner candidates

are chosen based on their score values which are determined

using different utility functions. Once the winner candidate

is chosen, both parties perform specialization process by

splitting their records into child partitions with respect to the

taxonomy trees provided. If the winner candidate belongs to

P1, it specializes and instructs P2 to specialize. If winner

candidate doesn't belong to P1, it waits to hear from P2 for

specialization. This process is repeated as per the number of

specializations which has to be given as input. The

taxonomy is fixed, so splitting the records according to the

taxonomy doesn't violate the differential privacy. Finally a

true count and a noisy count is added to the leaves of the

taxonomy tree to ensure overall ϵ-differentially private

output.

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 88-93

93 | P a g e

Consider the data in the tree below. Initially, D contains one

root node showing all the generalized records (Branch, Sex

and percentage of students). That means a particular record

in the table can contain the details of student of any branch

out of the branches available in the college, of any sex, with

any percentage. Now, to find the winner candidate both the

parties perform DISTEXP. Say branch is the winner

candidate, Party P1 first creates two child nodes as shown in

the figure. P1 sends instruction to P2. P2 then creates two

child nodes under the root D. Suppose the next winning

candidate is Sex, two parties cooperate to create further

specialized partitions resulting in the generalized table.

Fig 2.Generalized Data Table (D). Distributed exponential mechanism is used for specializing the predictor attributes in a

top-down manner.

VII. CONCLUSION

In this paper, we have presented the differential privacy

model which secures the private data shared between two

parties. We proposed a two party protocol for exponential

mechanism and implemented and algorithm for private data

release. We have shown that algorithm is secure under as

per the secured multiparty computation. It proves to be

better when compared to the single party algorithm and

better data utility than the distributed k-anonymity

algorithm.

VIII. OVERALL IDEA OF THE PAPER

Data between two parties where integrated by using

shared identifier such as ssn, name, employee id. Integrated

data is pre-processed ie.. removing all the explicit identifiers

such as name, age, etc.. but there may be a existence of

pseudo identifiers which may lead to link attack. Integrated

data gets generalized to hide the sensitive details. Owner of

the data generalizes the details by assuming some of the

field as sensitive. Hence security is satisfied statistically. A

method is proposed to provide dynamic security called

differential privacy which does not assume about

adversaries background knowledge.

IX. ACKNOWLEDGMENT

Authors wish to express their deepest gratitude to their

supervisor, Assistant Prof. Mrs. Y. Rohita who gave her

support, guidance, encouragement and insights throughout

the preparation of this paper. The authors are also grateful to

their parents, for their support and engagement.

REFERENCES

[1] Latanya Sweeney, "k-Anonymity: A Model for Protecting

Privacy", School of Computer Science, Carnegie Mellon

University, Pittsburgh, Pennsylvania, USA.

[2] Differential Privacy, Cynthia Dwork, Microsoft Research.

[3] The Algorithmic Foundations of Differential Privacy,

Cynthia Dwork Microsoft Research, USA and Aaron Roth,

University of Pennsylvania, USA.

[4] Yehuda Lindell and Benny Pinkas, "Secure Multiparty

Computation for Privacy-Preserving Data Mining".

