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Abstract- Protecting the private data from publishing has 

become a requisite in today's world of data. This solves the 

problem of divulging the sensitive data when it is mined. 

Amongst the prevailing privacy models, ϵ-differential privacy 

outfits one of the strongest privacy guarantees. In this paper, 

we address the problem of private data publishing on vertically 

partitioned data, where different attributes exist for same set of 

individuals. This operation is simulated between two parties. In 

specific, we present an algorithm with differentially private 

data release for vertically partitioned data between two parties 

in the semi-honest adversary model. First step towards 

achieving this is to present a two party protocol for exponential 

mechanism. By the same token, a two-party algorithm that 

releases differentially private data in a secure way following 

secure multiparty computation is implemented. A set of 

investigational results on the real-life data indicate that the 

proposed algorithm can effectively safeguard the information 

for a data mining task. 

Key words: Differential privacy, vertically partitioned data, 
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I. INTRODUCTION 

Significant progress in the communication and the 

storage systems emerged into large data sets. Efficient 

warehousing and manipulation of these large data sets are of 

paramount importance today. This made the database a 

commonplace in all the fields. Each anonymous entity owns 

a database like student data by an institution, employee data 

by an organization and medical data by a hospital. Mass 

appeal of the new paradigms like cloud computing increased 

the dispensing of data amongst multiple entities. Such data 

can be integrated to provide a unified view of the data 

assets, make data more available and to enable better 

analysis. For instance, enterprise data can be integrated to 

minimize the inconsistent data, lessen the redundant data 

and to lessen the interface software. However, none of the 

participating entities should obtain information more than 

necessary through data integration. Also, adversaries should 

not misemploy the new knowledge resulted from the 

integration of data as this might lead to the divulging of the 

sensitive information which was not available prior to the 

data integration. In this paper, we propound an algorithm to 

securely integrate the data from two parties(two data 

providers) preserving the personally identifiable sensitive 

data from publishing, whereby the new data still keep hold 

of the critical information required in the data mining tasks. 

Example: 

The National Association of Health Data Organizations 

(NAHDO) reported that 37 states in the USA have 

legislative mandates to collect hospital level data and that 17 

states have started collecting ambulatory care data from 

hospitals, physicians offices, clinics, and so forth [2]. The 

leftmost circle in Figure 1 contains a subset of the fields of 

information, or attributes, that NAHDO recommends these 

states collect; these attributes include the patient’s ZIP code, 

birth date, gender, and ethnicity. In Massachusetts, the 

Group Insurance Commission (GIC) is responsible for 

purchasing health insurance for state employees. GIC 

collected patient-specific data with nearly one hundred 

attributes per encounter along the lines of the those shown in 

the leftmost circle of Figure 1 for approximately 135,000 

state employees and their families. Because the data were 

believed to be anonymous, GIC gave a copy of the data to 

researchers and sold a copy to industry. For twenty dollars I 

purchased the voter registration list for Cambridge 

Massachusetts and received the information on two 

diskettes. The rightmost circle in Figure 1 shows that these 

data included the name, address, ZIP code, birth date, and 

gender of each voter. This information can be linked using 

ZIP code, birth date and gender to the medical information, 

thereby linking diagnosis, procedures, and medications to 

particularly named individuals. 

For example, William Weld was governor of Massachusetts 

at that time and his medical records were in the GIC data. 

Governor Weld lived in Cambridge Massachusetts. 

According to the Cambridge Voter list, six people had his 

particular birth date; only three of them were men; and, he 

was the only one in his 5-digit ZIP code. 

 

 
Figure 1 Linking to re-identify data 

The example above provides a demonstration of re-

identification by directly linking (or “matching”) on shared 

attributes. The work presented in this paper shows that 

altering To prevent such linking attacks, Jiang and Clifton 

and Mohammed et al. have proposed algorithms that enable 

two parties to integrate their data satisfying the k-anonymity 

privacy model. The k-anonymity model requires that an 

individual should not be personally identifiable from a group 

of size smaller than k based on the quasi-identifier (QID), 

where QID is a set of attributes that may serve as an 

identifier in the data set. Later to recover the loop holes of 

the K-anonymity principal, l-diversity principal was 

introduced. L-diversity requires that every QID group 

should contain at least “well-represented” values for the 

sensitive attribute. Similarly, there are a number of other 

partition-based privacy models such as ( -anonymity, (c, 
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k)-safety, and t-closeness that differently model the 

adversary and have different assumptions about her 

background knowledge. However, recent research has 

indicated that these privacy models are vulnerable to various 

privacy attacks and provide insufficient privacy protection. 

In this paper, we adopt differential privacy, a recently 

proposed privacy model that provides a provable privacy 

guarantee. Differential privacy is a rigorous privacy model 

that makes no assumption about an adversary’s background 

knowledge. A differentially private mechanism ensures that 

the probability of any output (released data) is equally likely 

from all nearly identical input data sets and, thus, guarantees 

that all outputs are insensitive to any individual’s data. In 

other words, an individual’s privacy is not at risk because of 

the participation in the data set. In this paper, we present an 

algorithm for differentially private data release for vertically 

partitioned data between two parties. We take the single-

party algorithm for differential privacy that has been 

recently proposed by Mohammed et al as a basis and extend 

it to the two party setting. Additionally, the proposed 

algorithm satisfies the security definition of the semi-honest 

adversary model. In this model, parties follow the algorithm 

but may try to deduce additional information from the 

received messages. Therefore, at any time during the 

execution of the algorithm, no party should learn more 

information about the other party’s data than what is found 

in the final integrated table, which is differentially private. 

The main contribution of our paper can be summarized as 

follows: 

We present a two-party protocol for the exponential 

mechanism. We use this protocol as a sub-protocol of our 

main algorithm, and it can also be used by any other 

algorithm that uses the exponential mechanism in a 

distributed setting. We implement the first two-party data 

publishing algorithm for vertically partitioned data that 

generate an integrated data table satisfying differential 

privacy. The algorithm also satisfies the security definition 

in the secure multiparty computation (SMC) literature. The 

rest of the paper is organized as follows: In Section2, we 

present an overview of ϵ-differential privacy. In section3, 

we talked about Vertical partitioning of the data in brief. In 

Section 4, we briefly review the security multiparty 

computation definition. In Section 5, we describe the two-

party protocol for the exponential mechanism. The 

implementation of two-party data publishing algorithm for 

vertically partitioned data is presented in Section 6.  

 

II. DIFFERENTIALLY PRIVACY 

Differential privacy will take the view that it was not, 

with the rationale that the impact on the smoker is the same 

independent of whether or not he was in the study. It is the 

conclusions reached in the study that affect the smoker, not 

his presence or absence in the data set. Differential privacy 

ensures that the same conclusions, for example, smoking 

causes cancer, will be reached, independent of whether any 

individual opts into or opts out of the data set. Specifically, 

it ensures that any sequence of outputs (responses to 

queries) is “essentially” equally likely to occur, independent 

of the presence or absence of any individual. Here, the 

probabilities are taken over random choices made by the 

privacy mechanism (something controlled by the data 

curator), and the term “essentially” is captured by a 

parameter. A smaller will yield better privacy (and less 

accurate responses). Differential privacy is a definition, not 

an algorithm. For a given computational task T and a given 

value of " there will be many differentially private 

algorithms for achieving T in an "-differentially private 

manner. Some will have better accuracy than others. When " 

is small, finding a highly accurate "-differentially private 

algorithm for T can be difficult, much as finding a 

numerically stable algorithm for a specific computational 

task can require effort. 

Definition: A randomized function K gives ϵ-differential 

privacy if for all data sets D1 and D2 differing on at most 

one element, and all S Є Range(K), 

 

 Pr[K(D1) Є S] ≤ exp(ϵ) × Pr[K(D2) Є S] (1) 

 

A mechanism K satisfying this definition addresses 

concerns that any participant might have about the leakage 

of her personal information x: even if the participant 

removed her data from the data set, no outputs (and thus 

consequences of outputs) would become significantly more 

or less likely. For example, if the database were to be 

consulted by an insurance provider before deciding whether 

or not to insure Terry Gross, then the presence or absence of 

Terry Gross in the database will not significantly affect her 

chance of receiving coverage. This definition extends to 

group privacy as well. A collection of c participants might 

be concerned that their collective data might leak 

information, even when a single participant’s does not. 

Using this definition, we can bound the dilation of any 

probability by at most exp(ϵc), which may be tolerable for 

small c. Note that we specifically aim to disclose aggregate 

information about large groups, so we should expect privacy 

bounds to disintegrate with increasing group size. 

 

A. Achieving Differential Privacy 

We now describe a concrete interactive privacy 

mechanism achieving є-differential privacy. The mechanism 

works by adding appropriately chosen random noise to the 

answer a = f(X), where f is the query function and X is the 

database; thus the query functions may operate on the entire 

database at once. It can be simple – eg, “Count the number 

of rows in the database satisfying a given predicate” – or 

complex – eg, “Compute the median value for each column; 

if the Column 1 median exceeds the Column 2 median, then 

output a histogram of the numbers of points in the set S of 

orthants, else provide a histogram of the numbers of points 

in a different set T of orthants.” 

Note that the complex query above (1) outputs a vector 

of values and (2) is an adaptively chosen sequence of two 

vector-valued queries, where the choice of second query 

depends on the true answer to the first query. Although 

complex, it is solely a function of the database. We handle 

such queries in Theorem. For example, suppose the 

adversary first poses the query “Compute the median of 

each column,” and receives in response noisy versions of the 

medians. Let M be the reported median for Column 1 (so M 

is the true median plus noise). The adversary may then pose 

the query: “If M exceeds the true median for Column 1 (ie, 

if the added noise was positive), then . . . else . . .” This 

second query is a function not only of the database but also 

of the noise added by the privacy mechanism in responding 

to the first query; hence, it is adaptive to the behaviour of 

the mechanism. 
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B. Exponential Noise and the L1-Sensitivity 

We will achieve є-differential privacy by the addition of 

random noise whose magnitude is chosen as a function of 

the largest change a single participant could have on the 

output to the query function; we refer to this quantity as the 

sensitivity of the function. 

Definition: For f : D → Rd, the L1-sensitivity of f is  

∆f =  ║f(D1) − f(D2) ║        (2)         

for all D1,D2 differing in at most one element. 

 

For many types of queries ∆f will be quite small. In 

particular, the simple counting queries (“How many rows 

have property P?”) have ∆f ≤ 1. Our techniques work best – 

ie, introduce the least noise – when ∆f is small. Note that 

sensitivity is a property of the function alone, and is 

independent of the database. 

The privacy mechanism, denoted Kf for a query function f, 

computes f(X) and adds noise with a scaled symmetric 

exponential distribution with variance σ2 (to be determined 

in the Theorem below in each component, described by the 

density function 

Pr[Kf(X)=a]  exp(−║f(X) − a║1/σ)            (3) 

This distribution has independent coordinates, each of which 

is an exponentially distributed random variable. The 

implementation of this mechanism thus simply adds 

symmetric exponential noise to each coordinate of f(X). 

Theorem: For f : D → Rd, the mechanism Kf gives (∆f/σ)-

differential privacy. 

Proof: Starting from (3), we apply the triangle inequality 

within the exponent, yielding for all possible responses 

Pr[Kf (D1)=r]≤Pr[Kf (D2) = r]×exp(║f(D1) − f(D2)║ / σ)

            (4) 

The second term in this product is bounded by exp(∆f/σ), by 

the definition of ∆f. Thus (1) holds for singleton sets S = 

{a}, and the theorem follows by a union bound. 

Theorem describes a relationship between ∆f, σ, and the 

privacy differential. To achieve є-differential privacy, one 

must choose σ ≥ є /∆f. 

The importance of choosing the noise as a function of the 

sensitivity of the entire complex query is made clear by the 

important case of histogram queries, in which the domain of 

data elements is partitioned into some number k of classes, 

such as the cells of a contingency table of gross shoe sales 

versus geographic regions, and the true answer to the query 

is the k-tuple of the exact number of database points in each 

class. Viewed naively, this is a set of k queries, each of 

sensitivity 1, so to ensure є-differential privacy it follows 

from k applications of Theorem (each with d = 1) that it 

suffices to use noise distributed according to a symmetric 

exponential with variance k/є in each component. However, 

for any two databases D1 and D2 differing in only one 

element, ||f(D1) − f(D2)|| = 1, since only one cell of the 

histogram changes, and that cell only by 1. Thus, we may 

apply the theorem once, with d = k and ∆f = 1, and find that 

it suffices to add noise with variance 1/є rather than d/є. 

 

III. VERTICALLY PARTITIONED DATA 

Data is said to be vertically partitioned when several 

organizations own different attributes of information for the 

same set of entities. Thus, vertical partitioning of data can 

formally be defined as follows: First, define a dataset D in 

terms of the entities for which the data are collected and the 

information that is collected for each entity. Thus, D ≡ (E, 

I), where E is the entity set for whom information is 

collected and I is the feature set that is collected. Assume 

that there are k different sites, P1,...,Pk collecting datasets 

D1 ≡ (E1, I1),...,Dk ≡ (Ek,Ik) respectively. Therefore, data 

is said to be vertically partitioned if E = ∩iEi = E1∩...∩Ek, 

and I = UiIi = I1U...UIk. In general, distributed data can be 

arbitrarily partitioned. Vertical partitioning can also be 

defined as a special case of arbitrary partitioning, where all 

of the partitions consist of information about the same set of 

entities. 

 

A. Vertically Partitioning 

A common form of vertical partitioning is to split 

dynamic data (slow to find) from static data (fast to find) in 

a table where the dynamic data is not used as often as the 

static. Creating a view across the two newly created tables 

restores the original table with a performance penalty, 

however performance will increase when accessing the 

static data e.g. for statistical analysis. 

Like horizontal partitioning, vertical partitioning lets 

queries scan less data. This increases query performance. 

For example, a table that contains seven columns of which 

only the first four are generally referenced may benefit from 

splitting the last three columns into a separate table. 

Vertical partitioning should be considered carefully, because 

analyzing data from multiple partitions requires queries that 

join the tables. Vertical partitioning also could affect 

performance if partitions are very large. 

Partitioning is important for the following reasons: 

 For easy management 

 To assist backup/recovery 

 To enhance performance. 

 

 For Easy Management 

The fact table in a data warehouse can grow up to hundreds 

of gigabytes in size. This huge size of fact table is very hard 

to manage as a single entity. Therefore it needs partitioning. 

 To Assist Backup/Recovery 

If we do not partition the fact table, then we have to load the 

complete fact table with all the data. Partitioning allows us 

to load only as much data as is required on a regular basis. It 

reduces the time to load and also enhances the performance 

of the system. 

Note: To cut down on the backup size, all partitions other 

than the current partition can be marked as read-only. We 

can then put these partitions into a state where they cannot 

be modified. Then they can be backed up. It means only the 

current partition is to be backed up. 

 To Enhance Performance 

By partitioning the fact table into sets of data, the query 

procedures can be enhanced. Query performance is 

enhanced because now the query scans only those partitions 

that are relevant. It does not have to scan the whole data. 

Vertical partitioning can be performed in the following two 

ways: 

 Normalization 

 Row Splitting 

 

 Normalization 

Normalization is the standard relational method of database 

organization. It is a process of removing redundant columns 

from a table and putting them in secondary tables that are 

linked to the primary table by primary key and foreign key 
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relationships. It also involves this splitting of columns 

across tables, but vertical partitioning goes beyond that and 

partitions columns even when already normalized. 

Take a look at the following tables that show how 

normalization is performed. 

 

P_id Qty Sales 

date 

Store 

id 

Store 

name 

Location 

30 5 3-8-13 16 Sunny Bangalore 

35 4 3-9-13 16 Sunny Bangalore 

40 5 3-9-13 64 San Mumbai 

45 7 3-9-13 16 Sunny Bangalore 

Table 1: Table before Normalization 

 

Store_id Store_name Location 

16 Sunny Bangalore 

64 San Mumbai 

 

P_id Qty Sales_date Store_id 

30 5 3-8-13 16 

35 4 3-9-13 16 

40 5 3-9-13 64 

45 7 3-9-13 16 

Table 2: Table after Normalization 

 

 Row Splitting 

Row splitting tends to leave a one-to-one map between 

partitions. The motive of row splitting is to speed up the 

access to large table by reducing its size. Row splitting 

divides the original table vertically into tables with fewer 

columns. Each logical row in a split table matches the same 

logical row in the other tables as identified by a UNIQUE 

KEY column that is identical in all of the partitioned tables. 

For example, joining the row with ID 712 from each split 

table re-creates the original row. 

 

IV. SECURE MULTIPARTY COMPUTATION 

The aim of secure multiparty computation is to enable 

parties to carry out such distributed computing tasks in a 

secure manner. The setting of secure multiparty computation 

encompasses tasks as simple as coin-tossing and broadcast, 

and as complex as electronic voting, electronic auctions, 

electronic cash schemes, contract signing, anonymous 

transactions, and private information retrieval schemes. 

Consider for a moment the tasks of voting and auctions. The 

privacy requirement for an election protocol ensures that no 

parties learn anything about the individual votes of other 

parties; the correctness requirement ensures that no coalition 

of parties has the ability to influence the outcome of the 

election beyond simply voting for their preferred candidate. 

Likewise, in an auction protocol, the privacy requirement 

ensures that only the winning bid is revealed (if this is 

desired); the correctness requirement ensures that the 

highest bidder is indeed the winning party (and so the 

auctioneer, or any other party, cannot bias the outcome). 

Due to its generality, the setting of secure multiparty 

computation can model almost every cryptographic 

problem. A number of different definitions have been 

proposed and these definitions aim to ensure a number of 

important security properties that are general enough to 

capture most (if not all) multiparty computation tasks. We 

now describe the most central of these properties: 

 Privacy: No party should learn anything more than 

its prescribed output. In particular, the only information that 

should be learned about other parties' inputs is what can be 

derived from the output itself. For example, in an auction 

where the only bid revealed is that of the highest bidder, it is 

clearly possible to derive that all other bids were lower than 

the winning bid. However, this should be the only 

information revealed about the losing bids. 

 Correctness: Each party is guaranteed that the 

output that it receives is correct. To continue with the 

example of an auction, this implies that the party with the 

highest bid is guaranteed to win, and no party including the 

auctioneer can alter this. 

 Independence of Inputs: Corrupted parties must 

choose their inputs independently of the honest parties' 

inputs. This property is crucial in a sealed auction, where 

bids are kept secret and parties must ¯x their bids 

independently of others. We note that independence of 

inputs is not implied by privacy. For example, it may be 

possible to generate a higher bid without knowing the value 

of the original one. Such an attack can actually be carried 

out on some encryption schemes (i.e., given an encryption of 

$100, it is possible to generate a valid encryption of $101, 

without knowing the original encrypted value). 

 Guaranteed Output Delivery: Corrupted parties 

should not be able to prevent honest parties from receiving 

their output. In other words, the adversary should not be able 

to disrupt the computation by carrying out a \denial of 

service" attack. 

 Fairness: Corrupted parties should receive their 

outputs if and only if the honest parties also receive their 

outputs. The scenario where a corrupted party obtains output 

and an honest party should not be allowed to occur. This 

property can be crucial, for example, in the case of contract 

signing. Specifically, it would be very problematic if the 

corrupted party received the signed contract and the honest 

party did not. 

Symbolically, Secured Multiparty Computation is defined as 

Let f : {0,1}* × {0,1}*→{0,1}*×{0,1}*  be a probabilistic 

polynomial-time functionality, where f1(x,y) (f2(x; y), 

respectively) denotes the first (second, respectively) element 

of f(x,y). Let Π be a two-party protocol for computing f. Let 

the view of the first (second, respectively) party during an 

execution of protocol Π on (x, y) denoted  ( , 

respectively) be (x,r1,m1, . . .,mt) ((y,r2,m1, . . 

.,mt),respectively), where r1 represents the outcome of the 

first (r2 the second, respectively) party’s internal coin tosses 

and mi represents the ith message the first (second, 

respectively) party has received. The output of the first 

(second, respectively) party during an execution of Π on 

(x,y) denoted  (x, y) (  (x, y), respectively) is 

implicit in the party’s view of the execution. We say that Π 

securely computes f if there exist probabilistic polynomial 

time algorithms denoted S1 and S2 such that  

{(S1(x,f1(x,y)), f2(x; y))}x,yϵ{0,1} 

  {( (x,y), (x,y))}x;y2ϵ{0,1}* 

{(f1(x,y),S2(x, f1(x; y)))}x;yϵ{0,1}* 

 {(  (x,y), (x,y))} x;yϵ{0,1}* ,  

where  denotes computational indistinguishability.  

Two probability distributions are computationally 

indistinguishable if no efficient algorithm can tell them 

apart. Namely, the output distribution of every efficient 
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algorithm is oblivious whether the input is taken from the 

first distribution or from the second distribution [20]. Many 

of the protocols, as in the case of the proposed algorithm in 

this paper, involve the composition of secure subprotocols in 

which all intermediate outputs from one subprotocol are 

inputs to the next subprotocol. These intermediate outputs 

are either simulated given the final output and the local input 

for each party or computed as random shares. Random 

shares are meaningless information by themselves. 

However, shares can be combined to reconstruct the result. 

Using the composition theorem [21], it can be shown that if 

each subprotocol is secure, then the resulting composition is 

also secure. 

 

V. TWO-PARTY PROTOCOL FOR 

EXPONENTIAL MECHANISM 

In this section, we present a two-party protocol for the 

exponential mechanism together with a detailed analysis. 

The exponential mechanism chooses a candidate that is 

close to optimum with respect to a utility function while 

preserving differential privacy. In the distributed setting, the 

candidates are owned by two parties and, therefore, a secure 

mechanism is required to compute the same output while 

ensuring that no extra information is leaked to any party. 

 

A. Distributed Exponential Mechanism (DistExp) 

The distributed exponential mechanism presented in 

Algorithm1 takes the following items as input: 

1.Finite discrete alternatives {(v1, u1), . . . , (vn, un)}, where a 

pair (vi, ui) is composed of the candidate vi and its score ui. 

Parties P1 and P2 own (v1, u1), . . . ,(vj, uj) and (vj+1, uj+1) . . . 

(vn, un), respectively. 

2.Privacy budget ϵ. 

 

Algorithm 1 Distributed Exponential Mechanism 
Input: Candidate-score pairs ((v1; u1), . . . , (vn, un) 

owned by the parties, and the privacy budget ϵ 

Output: Winner w 

1: P1 evaluate s1 ←  

2: P2 evaluates s2 ←    

3: P1 and P2 execute RVP to compute random shares 

R1 and R2, where (R1 + R2) ϵ (S1+S2); 

4: for k=1 to n do 

5: if k ≤ j then6: P1 evaluates L1← ; 

7: P2 evaluates L2 ←0; 

8: else 

9: P1 evaluates L1← ; 

10: P2 evaluates L2← ; 

11: end if 

12: P1 and P2 execute COMPARISON(R1;R2; L1; L2); 

13: if b= 0 then 

14: w ←vk; 

15: return w; 

16: end if 

17: end for 

 

Algorithm 2 Comparision 

Input: Random shares R1 and R2, and values L1 and L2 

Output: b 

1: R = add(R1,R2); 

2: L = add(L1, L2); 

3: b = compare(R,L); 

4: return b; 

The protocol outputs a winner candidate depending on its 

score using the exponential mechanism. The scores of the 

candidates can be calculated using different utility functions. 

Given the scores of all the candidates, exponential 

mechanism selects the candidate vj with the following 

probability, where Δu is the sensitivity of the chosen utility 

function: 

      

    (5) 

The distributed exponential mechanism can be summarized 

as follows: 

Computing(3): Consider an interval [0,1] partitioned into 

segments as per the probability mass defined in (5) for the 

candidates. Now, we sample a random number uniformly in 

the same range and the partition in which the random 

number falls determines the winner candidate. Since we are 

not aware of any secure division scheme that fits the 

situation, we solve this in a different way. We partition the 

interval [0, ] into n segments, where each 

segment corresponds to a candidate vi and has a subinterval 

of length exp and the sampling procedure is carried out 

like the earlier which determines the winner candidate. 

Selecting the random number: Sampling the random 

number is carried out using Random Value protocol(RVP). 

Each party first computes individually exp( ) for its 

candidates. Then both P1 and P2 compute s1=    

and s2= , respectively. P1 and P2 need to pick 

up a random number in the range [0,s1+s2] where 

s1+s2= . This can be achieved by RVP. It takes 

s1 and s2 from the parties as inputs and outputs R1and R2 to 

the parties respectively, where R=R1+R2 

 

VI. IMPLEMENTATION OF TWO-PARTY 

DIFFERENTIALLY PRIVATE DATA RELEASE 

ALGORITHM 

The basic idea is to anonymize the data by a sequence 

of specializations starting from the root or the topmost 

general state. The specialization process is splitting the 

taxonomy tree downwards where the child values replace 

that of the parents'. It is an iterative process. Each iteration 

of the specialization process selects a winner candidate 

using the distributed exponential mechanism (Algorithm 1) 

which is owned by either of the parties. Winner candidates 

are chosen based on their score values which are determined 

using different utility functions. Once the winner candidate 

is chosen, both parties perform specialization process by 

splitting their records into child partitions with respect to the 

taxonomy trees provided. If the winner candidate belongs to 

P1, it specializes and instructs P2 to specialize. If winner 

candidate doesn't belong to P1, it waits to hear from P2 for 

specialization. This process is repeated as per the number of 

specializations which has to be given as input. The 

taxonomy is fixed, so splitting the records according to the 

taxonomy doesn't violate the differential privacy. Finally a 

true count and a noisy count is added to the leaves of the 

taxonomy tree to ensure overall ϵ-differentially private 

output. 
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Consider the data in the tree below. Initially, D contains one 

root node showing all the generalized records (Branch, Sex 

and percentage of students). That means a particular record 

in the table can contain the details of student of any branch 

out of the branches available in the college, of any sex, with 

any percentage. Now, to find the winner candidate both the 

parties perform DISTEXP. Say branch is the winner 

candidate, Party P1 first creates two child nodes as shown in 

the figure. P1 sends instruction to P2. P2 then creates two 

child nodes under the root D. Suppose the next winning 

candidate is Sex, two parties cooperate to create further 

specialized partitions resulting in the generalized table. 

 

 

 
Fig 2.Generalized Data Table (D). Distributed exponential mechanism is used for specializing the predictor attributes in a 

top-down manner. 

 

VII. CONCLUSION 

In this paper, we have presented the differential privacy 

model which secures the private data shared between two 

parties. We proposed a two party protocol for exponential 

mechanism and implemented and algorithm for private data 

release. We have shown that algorithm is secure under as 

per the secured multiparty computation. It proves to be 

better when compared to the single party algorithm and 

better data utility than the distributed k-anonymity 

algorithm. 

 

VIII. OVERALL IDEA OF THE PAPER 

Data between two parties where integrated by using 

shared identifier such as ssn, name, employee id. Integrated 

data is pre-processed ie.. removing all the explicit identifiers 

such as name, age, etc.. but there may be a existence of 

pseudo identifiers which may lead to link attack. Integrated 

data gets generalized to hide the sensitive details. Owner of 

the data generalizes the details by assuming some of the 

field as sensitive. Hence security is satisfied statistically. A 

method is proposed to provide dynamic security called 

differential privacy which does not assume about 

adversaries background knowledge. 
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