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Abstract—This Mind reading encompasses our ability to 

attribute mental states to others, and is essential for 

operating in a complex social environment. The goal in 

building mind reading machines is to enable computer 

technologies to understand and react to people’s emotions 

and mental states. This paper describes a system for the 

automated inference of cognitive mental states from 

observed facial expressions and head gestures in video. 

The system is based on a multilevel dynamic Bayesian 

network classifier which models cognitive mental states as 

a number of interacting facial and head displays. 

Experimental results yield an average recognition rate of 

87.4% for 6 mental states groups: agreement, 

concentrating, and disagreement, interested, thinking and 

unsure. Real time performance, unobtrusiveness and lack 

of preprocessing make our system particularly suitable for 

User-independent human computer interaction. 

I. INTRODUCTION 

As you were reading through the abstract, your mind engaged 

in a series of calculations designed to figure out what I meant  

in using the specific words and phrases that I used in writing 

it. Your capacity to "mind read" attempted to identify and 

ascribe to me a coherent set of beliefs, intentions, desires and 

other mental states that might have led me to write what I 

wrote. This powerful compulsion to predict and explain the 

behavior of other agents is not only active while reading text, 

but also while engaged in dialogue, while observing everyday 

human action, while competing or cooperating, when engaged 

with fiction of any type, and possibly when planning for the 

future or learning from past episodes. The central cognitive  

activity involved in mindreading is the ascription of mental 

states from one agent to another. If Max observes Sally  

walking to the kitchen, he might infer that Sally is hungry, 

wants something to eat and will walk to the refrigerator 

because she thinks there is food inside. Max ascribes a number 

of mental states to Sally including her belief that food is in the 

fridge, that she desires to eat, and that she intends to walk to 

the fridge in order to get a snack. However, he likely does not 

ascribe other less relevant but logically possible mental states, 

such as Sally wanting to get something from the refrigerator 

and her believing that 89 is in the set of prime numbers. 

Although it seems odd to consider the latter as an example, 

such inferences are not only warranted but demanded on 

certain formal accounts of reasoning about beliefs. People 

mind read or attribute mental states to others all the time, 

effortlessly, and mostly subconsciously. Mind reading allows 

us to make sense of other people’s behavior, predict what they 

might do next, and how they might feel. While subtle and 

somewhat elusive, the ability to mind read is essential to the 

social functions we take for granted. A lack of or impairment 

in mind reading abilities are thought to be the primary 

inhibitor of emotion and social understanding in people 

diagnosed with autism (e.g. Baron-Cohen et. al). People 

employ a variety of nonverbal communication cues to infer 

underlying mental states, including voice, posture and the 

face. The human face in particular provides one of the most 

powerful, versatile and natural means of communicating a 

wide array of mental states. One subset comprises cognitive 

mental states such as thinking, deciding and confused, which 

involve both an affective and intellectual component. 

Cognitive mental states play an important role in interpreting 

and predicting the actions of others and as shown in Rosin and 

Cohen these non-basic mental states occur more often in day 

to day interactions than the prototypic basic ones (happiness, 

Sadness, anger, fear, surprise and disgust). Because of their 

intellectual component, cognitive mental states are especially 

relevant in human computer interaction which often involves 

problem-solving and decision-making. Paradoxically, despite 

the crucial role of cognitive mental states in making sense of 

people’s behavior facial expressions are almost always studied 

as a manifestation of basic emotions. The majority of existing 

automated facial expression analysis systems either attempt to 

identify basic units of muscular activity in the human face 

(action units or AUs) based on the Facial Action Coding 

System (FACS) , or only go as far as recognizing the set of 

basic Emotions. The recognition of cognitive mental states 

involves the analysis of multiple asynchronous information 

sources such as purposeful head gestures, eye-gaze direction, 

in addition to facial actions. Also, cognitive mental states are 

only reliably discerned by analyzing the temporal 

dependencies across consecutive facial and head displays. In 

other words, modeling cognitive mental states involves 

multilevel temporal abstractions: at the highest level, mental 

states typically last between 6-8 sec. Displays can last up to 2 
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sec, while at the lowest level, action units last tenths of 

seconds. This paper describes a system for inferring cognitive 

mental states from video of facial expressions and head 

gestures in real time. Being unobtrusiveness and fully 

automated makes the system particularly suitable for user 

independent man-machine contexts. To our knowledge, this 

work makes the first attempt at classifying cognitive mental 

states automatically. 

 

1.1 Overview:- 

 

Our approach combines machine vision and supervised 

statistical machine learning to model hidden mental states of a 

person based upon the observable facial and head displays of 

that person. An overview of the automated mind reading 

system is shown in Figure 1. Video of the face is recorded at 

29 frames per second and input to the system in real time. We 

assume a full frontal view of the face, but take into account 

variations in head pose and framing inherent in video-based 

interaction. reading system is shown in Figure 1. Video of the 

face is recorded at 29 frames per second and input to the 

system in real time. 

 

 
Figure1 

reading system is shown in Figure 1. Video of the face is 

recorded at 29 frames per second and input to the system in 

real time. We assume a full frontal view of the face, but take 

into account variations in head pose and framing inherent in 

video-based interaction. The vision-based component 

recognizes dynamic head and facial displays from video. It 

locates and tracks fiducially landmarks across an image, then 

estimates head pose from expression-invariant feature points. 

The head pose parameters depict head action units. Facial 

feature motion, shape and color descriptors identify facial 

action units. Head and facial actions are combined temporally 

in a hidden Markov model (HMM) framework to recognize 

displays. The inference component makes use of dynamic 

graphical models, specifically dynamic Bayesian networks 

(DBNs) that represent high-level cognitive mental states given 

observed displays. A separate model of each mental state is 

learned allowing the system to be in more than one mental 

state at a time. This is particularly useful for modeling mental 

states that are not mutually exclusive. The use of DBNs makes 

it possible to later add eye-gaze and context to map multiple 

information sources to mental states. By exploiting the 

different temporal scale of each level the mind reading system 

runs in real time. For example, instead of invoking a mental 

state inference on every frame, approximately 20 inferences 

are made in a video 6 seconds long (190 frames). In addition, 

each level of the system is implemented as a sliding window 

to make it possible to run the system for an indefinite duration 

 

1.2 Methodology and Modeling 

 

In a recent Cognitive Science article, Casemates, Langley and 

Bello (2008) argued for three core criteria to be applied in the 

evaluation of models for higher-order cognition. These three 

criteria are ability, breadth, and parsimony. Generally 

speaking, by ability we meant the general capacity of a model 

to account for human-level competence with respect to the 

phenomena under investigation. By breadth, we meant that the 

model is capable of accounting for a variety (if not the 

preponderance) of phenomena-related results, including 

capturing competence-related trends across a sufficiently large 

space of human data. By parsimony, we meant that the model 

displays both ability and sufficient breadth without 

multiplying cognitive mechanisms (or representations) beyond 

the demands imposed by our most current data. As I shift 

discussion toward existing computational approaches to 

mindreading, I will argue that typically employed assumptions 

in both AI and computational cognitive science fail on at least 

one of these criteria. As a matter of methodology, I am 

committed to not only giving a computational explanation of 

Mind reading as a capacity, but also providing hypotheses for 

how it might be degraded or even fail outright. The strategy I 

adopt is to assume that error-prone mindreading is the result of 

cognitive systems that evolved for purposes other than 

mindreading and have since been re-purposed to the task of 

understanding other minds. One might argue that building a 

cognitive system that is prone to attribution errors seems 

wasteful or otherwise silly. I think that this remains to be seen. 

There are many types of social interaction where one agent 

benefits by having the ability to reason about the kinds of 

attribution errors made by another agent. For example, games 

like poker would be much less interesting for expert players if 

they were not able to apply a fairly rich model of errors to 

their advantage, even if they have no consciously accessible 

theory of attribution errors to draw from. The semantics of 

important social concepts like stereotyping would be difficult 

to capture in. 

 

II. RELATED WORK 

.  

2.1 Head and facial action unit analysis 

 

Twenty four facial landmarks are detected using a face 

template in the initial frame, and their positions tracked across 
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the video. The system builds on Face station, a feature point 

tracker that supports both real time and offline tracking of 

facial features on a live or recorded video stream. The tracker 

represents faces as face bunk graphs or stack-like structures 

which efficiently combine graphs of individual faces that vary 

in factors such as pose, glasses, or physiognomy. The tracker 

outputs the position of twenty four feature points, which we 

then use for head pose estimation and facial feature extraction. 

 

2.2 Extracting head action units 

 

Natural human head motion typically ranges between 70- 90o 
of downward pitch, 55o of upward pitch, 70o of yaw (turn), 

and 55o of roll (tilt), and usually occurs as a combination of 

all three rotations . The output positions of the localized 

feature points are sufficiently accurate to permit the use of 

efficient, image-based head pose estimation. Expression 

invariant points such as the nose tip, root, nostrils, inner and 

outer eye corners are used to estimate the pose. Head yaw is 

given by the ratio of left to right eye widths. A head roll is 

given by the orientation angle of the two inner eye corners. 

The computation of both head yaw and roll is invariant to 

scale variations that arise from moving toward or away from 

the camera. Head pitch is determined from the vertical 

displacement of the nose tip normalized against the distance 

between the two eye corners to account for scale variations. 

The system supports up to 50o, 30o and 50o of yaw, roll and 

pitch respectively. Pose estimates across consecutive frames 

are then used to identify head action units. For example, a 

pitch of 20o degrees at time t followed by 15o at time t + 1 
indicates a downward head action, which is AU54 in the 

FACS coding. 

 

2.3 Extracting facial action units 

 

Facial actions are identified from component-based facial 

features (e.g. mouth) comprised of motion, shape and color 

descriptors. Motion and shape-based analysis are particularly 

suitable for a real time video system, in which motion is 

inherent and places a strict upper bound on the computational 

complexity of methods used in order to meet time constraints. 

Color-based analysis is computationally efficient, and is 

invariant to the scale or viewpoint of the face, especially when 

combined with feature localization (i.e. limited to regions 

already defined by feature point tracking). The shape 

descriptors are first stabilized against rigid head motion. For 

that, we imagine that the initial frame in the sequence is a 

reference frame attached to the head of the user. On that 

frame, let (Xp, Yp) be an “anchor” point, a 2D projection of 

the approximated real point around which the head rotates in 

3D space. The anchor point is initially defined as the midpoint 

between the two mouth corners when the mouth is at rest, and 

is at a distance d from the line joining the two inner eye 

corners l. In subsequent frames the point is measured at 

distance d from l, after accounting for head turns.  

 

 
 

On each frame, the polar distance between each of the two 

mouth corners and the anchor point is computed. The average 

percentage change in polar distance calculated with respect to 

an initial frame is used to discern mouth displays. An increase 

or decrease of 10% or more, determined empirically, depicts a 

lip pull or lip pucker respectively (Figure 2). In addition, 

depending on the sign of the change we can tell whether the 

display is in its onset, apex, offset. The advantages of using 

polar distances over geometric mouth width and height (which 

is what is used in Tian et al. [20]) are support for head motion 

and resilience to inaccurate feature point tracking, especially 

with respect to lower lip points.  

 
The mouth has two color regions that are of interest: aperture 

and teeth. The extent of aperture present inside the mouth 

depicts whether the mouth is closed, lips parted, or jaw 

dropped, while the presence of teeth indicates a mouth stretch. 

Figure 3 shows a plot of teeth and aperture samples in 

luminance-saturation space. Luminance, given by the relative 

lightness or darkness of the color, acts as a good discriminator 

for the two types of mouth regions. A sample of n = 125000 
pixels was used to learn the probability distribution functions 

of aperture and teeth. A lookup table defining the probability 

of a pixel being aperture given its luminance is computed for 

the range of possible luminance values (0% for black to 100% 

for white). A similar lookup table is computed for teeth. 

Online classification into mouth actions proceeds as follows: 

For every frame in the sequence, we compute the luminance 
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value of each pixel in the mouth polygon. The luminance 

value is then looked up to determine the probability of the 

pixel being aperture or teeth. Depending on empirically 

determined thresholds the pixel is classified as aperture or 

teeth or neither. Finally, the total number of teeth and aperture 

pixels are used to classify the mouth region into closed (or lips 

part), jaw drop, or mouth stretch. Figure 4 shows classification 

results of 1312 frames into closed, jaw drop and mouth 

stretch. Figure 4: Classifying 1312 mouth regions into closed, 

jaw drop or stretch 

 

 
 

2.4 Head and facial display recognition 

 

Facial and head actions are quantized and input into left to 

right HMM classifiers to identify facial expressions and head 

gestures. Each is modeled as a temporal sequence of action 

units (e.g. a head nod is a series of alternating up and down 

movement of the head). In contrast to static classifiers which 

classify single frames into an emotion class, HMMs model 

dynamic systems spatial-temporally, and deal with the time 

warping problem. In addition, the convergence of recognition 

computation may run in real time, a desirable aspect in 

automated facial expression recognition systems for human 

computer interaction. We devise several HMM topologies for 

the recognition of the displays. For instance the head nod 

HMM is a 4- state, 3 symbol HMM, where the symbols 

correspond to head up, head down, and no action. We use a 

similar topology for head shakes and supported mouth 

displays. For tilt and turn displays we use a 2-state HMM with 

7 observable symbols. The symbols encode the intensity of the 

tilt and turn motions. Maximum likelihood training is used to 

determine the parameters of each HMM model _ = {_, _, _} 
offline, described by transition probabilities, the probability 

distributions of the states, and priors. For each model _ and a 

sequence of observations O = {o1, o2... out } forward-

backward algorithm determines the probability that the 

observations are generated by the model. Forward-backward is 

linear in T, so is suitable for running in real time. 

 

2.5 Mental state recognition 

 

We then evaluate the overall system by testing the inference of 

cognitive mental states, using leave-5-out cross validation. 

Figure 6 shows the results of the various stages of he mind 

reading system for a video portraying the mental state 

choosing, which belongs to the mental state group thinking. 

The mental state with the maximum likelihood over the entire 

video (in this case thinking) is taken as the classification of the 

system. 87.4% of the videos were correctly classified. The 

recognition rate of a mental class m is given by the total 

number of videos of that class whose most likely class 

(summed over the entire video) matched the label of the class 

m. The false positive rate for class m (given by the percentage 

of files misclassified as m) was highest for agreement (5.4%) 

and lowest for thinking (0%). Table 2 summarizes the results 

of recognition and false positive rates for 6 mental states. A 

closer look at the results reveals a number of interesting 

points. First, onset frames of a video occasionally portray a 

different mental state than that of the peak. For example, the 

onset of disapproving videos was (mis)classified as unsure. 

Although this incorrectly biased the overall classification to 

unsure, one could argue that this result is not entirely incorrect 

and that the videos do indeed start off with the person being 

unsure. Second, subclasses that do not clearly exhibit the class 

signature are easily misclassified. For example, the assertive 

and decided videos in the agreement group were misclassified 

as concentrating, as they exhibit no smiles, and only very 

weak head nods. Finally, we found that some mental states 

were “closer” to each other and could co-occur. For example, 

a majority of the unsure files scored high for thinking too.  

III. CONCLUSION 

Mindreading represents one of the most complicated and 

interesting cognitive activities in which we routinely engage. 

As such, we ought to take it seriously as a major desideratum 

in the development of cognitive systems. The overall aim of 

this paper has been to illustrate the complexities of 

mindreading and the relative difficulty in trying to account for 

them using assumptions that typify standard techniques in AI. 

Many of these assumptions are prescriptive by their nature, 

and enforce constraints on rationality that are rarely satisfied 

during real-world episodes of mindreading or even during 

controlled studies performed in laboratory settings. I have 

argued that a deflationary account of the mental states of 

others consisting primarily of counterfactual simulations and 

inheritance explains the close relationship between 

performance on mindreading tasks and data on entertaining 

pretenses. Standard accounts of propositional attitudes assume 

a sharp delineation between mental states, usually related to 

the kinds of actions that they tend to motivate. At best I think 

we have seen that this assumption is questionable, and at at 

worst it seems wrong. When taken to unreasonable extremes, 

it seems as if totally decoupling mental states from one 

another at the level of implementation makes it difficult to 
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explain engagement with fiction, empathy, wishful thinking, 

self-deception, pretense, delusions or hallucinations. While 

some theorists see these as unfortunate outliers, I have argued 

that mindreading-enabled systems should be able to recognize 

them in others and modify their interaction strategies 

accordingly. Having a system that initially is capable of 

exhibiting all of these behaviors and using simulation to 

recognize them in others seems to be a reasonable alternative 

to the rather ugly option of trying to axiomatize them in 

service of reasoning about them. I have further argued that 

inheritance rules implemented as soft constraints lets us fit a 

wide swath of data on mindreading than spans the gap 

between totally incorrect and perfectly correct attributions. 

Under assumptions of unlimited inferential resources, this 

range of attributions accounts for systematic mispredictions 

and perfectly rational epistemic inference alike. There is much 

work to be done to flesh out my suggestions into a robust 

implementation. While the representation of inheritance as 

soft constraints allows for variance in the attribution process, 

it is unclear how to systematically link costs on constraints to 

other features of ongoing cognition, including explicit 

judgments and resource limitations in the cognitive system. I 

have also intentionally left the discussion of learning new 

inheritance constraints from successful and unsuccessful 

episodes of mindreading as an open issue. The issue of 

whether or not such learning is automatic or intentionally 

initiated remains open, and computational expressions of the 

learning process are equally undeveloped. The influence of 

affect, emotions, feelings, and physiological variables on 

inheritance is completely unexplored in this paper, as is the 

question of how to reason when uncertain about the mental 

states of the target or when knowing the target to be uncertain 

about a proposition of interest. I have also not spent any time 

on the relationship between third person mindreading and 

introspection. In short, this paper has barely scratched the 

surface, but I hope the suggestions that I have provided will 

serve as a good starting point for researchers who are 

interested in accounting for both mindreading competence and 

architecture-level performance in a parsimonious way. 
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