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Abstract— A sparse signal in a high dimensional space, 

compressive sensing system, which combines with sampling and 

compression, can reconstruct that signal accurately and 

efficiently from fewer linear measurements much less than its 

actual dimension using sparse priors of signal. Currently, 

researchers always use orthogonal wavelet to represent the 

images. But the wavelet only has single scaling function and can 

not simultaneously satisfy the orthogonality, high vanishing 

moments, compact support, symmetry characteristic and 

regularity. Developed from the theory of wavelet, multi-wavelet 

transform, which can simultaneously satisfy the five 

characteristics, provides a great potential to obtain high-

performance coding. According to the three main steps (Sparse 

representation, measurement matrix, reconstruction algorithm) 

of compressive sensing image reconstruction, this paper proposes 

a compressive sensing image reconstruction based on sparse 

representation of the image in multi-wavelet transform domain 

while using Orthogonal Matching Pursuit iterative as the 

reconstruction algorithm. The experimental results show that the 

reconstructed image has batter vision quality and a good 

performance on PSNR. Meanwhile, the algorithm of 

reconstruction gets a faster convergence rate. 

Index terms- Compressed Sensing, Kalman Fied Compressed 

Sensing, dynamic MRI, 

I. INTRODUCTION 

 

 In recent work, the problem of causally reconstructing 

time sequences of spatially sparse signals, with unknown and 

slow time varying sparsity patterns, from a limited number of 

linear “incoherent” measurements was studied and a solution 

called Compressed Sensing (CS) was proposed. An important 

example of this type of problems is real-time medical image 

sequence reconstruction using MRI, for e.g. dynamic MRI to 

image the beating heart or functional MRI to image the brain’s 

neuronal responses to changing stimuli(see Fig.1). In these 

examples, the signal (heart or brain image) is approximately 

sparse (compressible) in the wavelet transform domain. MRI 

measures the 2D Fourier transform of the image which is 

known to be “incoherent” w.r.t. the wavelet basis. Because MR 

data acquisition is sequential, the scan time (time to get enough 

data to accurately reconstruct one frame) is reduced if fewer 

measurements are needed for accurate reconstruction and 

hence there has been a lot of interest in the MRI community to 

use compressed sensing (CS) to do this. 

 
This idea is first demonstrated for a single MR image or 

volume. The work of extending the idea to offline dynamic 

MRI reconstruction, i.e. it used the entire time sequence of 

measurements to jointly estimate the entire image sequence 

(treated it as a 3D x-yt signal, sparse in wavelet domain along 

the x-y axis and sparse in the Fourier domain along the time 

axis). But this is a batch solution (needs all measurements first) 

and also the resulting joint optimization is computationally 

complex. On the other hand, the solution  is causal and also 

much faster, and thus can be used to make dynamic MRI real-

time. Reduced scan-time and real-time reconstruction are the 

currently missing abilities that prevent the use of MRI in 

interventional radiology applications, such as MR-guided 

surgery. 

In this work we use to develop a CS algorithm to causally 

reconstruct image sequences using MR data. There are some 

key differences in our current problem from the simplistic 

model used and these require some practical modifications to 

the algorithm of CS. Additionally, in this work, (i) we develop 

a method for estimating the prior model parameters from 

training data and (ii) we use the results to develop a method for 

selecting the number of observations required and the 

parameters used by the CS step. Results on reconstructing a 

cardiac sequence and a brain sequence show greatly reduced 

mean squared error(MSE) when compared to performing CS at 

each time, as well as to some other modifications of CS. For 

e.g. in Fig 1b, the CS error is more twice that of filtered CS. 

 

 

1.1 Problem Formulation 

 

     Let (Zt)m1xm2 denote the time at t and let m:=m1m2 be its 

dimension. Let Xt denote the 2D discrete wavelet 

transform(DWT) of Zt , i.e. Xt := WZtW'. Let F denote the 

discrete Fourier Transform (DFT) matrix and           Yfull,t= 
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FZtF' = FW'XtW'F' denote the 2D-DFT of Zt. All of this can be 

transformed to a 1D problem by using Kronecker product. Let 

yfull,t := vec(Yfull,t) and                  xt := vec(Xt). Then yfull,t = 

F1DW1Dxt where                    F1D = Kronecker product of F and 

W1D = Kronecker product of W. Here, vec(Xt) denotes the 

vectorization of the matrix Xt formed by stacking the columns 

of Xt into a single column vector. In MR imaging, we capture a 

set of n, (n < m), Fourier coefficients corrupted by white noise. 

This can be modeled by applying a n × m mask, M (which 

contains a single 1 at a different location in each row and all 

other entries are zero) to yfull,t followed by adding Gaussian 

noise. The above can be rewritten using the notation 

 

 

II. COMPRESSIVE SENSING 

 

CS relies on two principles: sparsity, which pertains to the 

properties of natural signals of interest, and incoherence, which 

involves how signal is sensed/sampled. The basic principle is 

that sparse or compressible signals can be reconstructed from a 

surprisingly small number of linear measurements, provided 

that the measurements satisfy an incoherence property. Such 

measurements can then be regarded as a compression of the 

original signal, which can be recovered if it is sufficiently 

compressible. 

 

Sparsity: 

In particular, many signals are sparse, that is, they contain 

many coefficients close to or equal to zero, when 

represented in some domain. 

 

Incoherence: 

Incoherence extends the duality between time and 

frequency. It expresses the idea that objects having a sparse 

representation in Ψ must be spread out in the domain in which 

they are acquired. This is similar to the analogy in which Dirac 

or a spike in the time domain is spread out in the frequency 

domain. Incoherence is necessary for acquiring good linear 

measurement in the new measurement space. 

STEPS OF COMPRESSIVE SENSING 

1) Select an appropriate wavelet function and set a required 

decomposition level, then execute the wavelet packet foil 

decomposition on the original image. 

 

2) Determine the optimal basis of the wavelet packet in the 

light of the Shannon entropy criterion. 

 

3) As the main information and energy of the original 

image are concentrated in the low frequency subband by the 

wavelet packet transform, which plays a very important role in 

the image reconstruction, all the low-frequency coefficients are 

compressed losslessly in order to reduce the loss of the useful 

information. 

 

4) According to the theory of CS, select an appropriate 

random measurement matrix, and make measurement encoding 

on all the high frequency coefficients in line with the optimal 

basis of the wavelet packet, and obtain the measured 

coefficients. 

 

5) Restore all the high-frequency coefficients with the 

method of OMP from the measured coefficients. 

 

6) Implement the wavelet packet inverse transform to all 

the restored low-frequency and high frequency coefficients, 

and reconstruct the original image. 

 

 
These movies demonstrate the power of compressed 

sensing for rapid acquisition in dynamic MRI. (1) Shows an 

image sequence of a mouse heart beating that has been densely 

sampled. Were we to attempt to sub-sample it say by a factor 

of 5 (20% of Nyquist) and use linear reconstruction techniques 

we would experience large qualities of aliasing interference 

(2). However using nonlinear reconstruction algorithms, in this 

case our recently developed Stage wise Conjugate Gradient 

Pursuit algorithm, we can generate a good reconstruction 

without aliasing, (3). 

 

 III. IMAGE RECONSTRUCT METHOD 

Image reconstruction in CT is a mathematical process that 

generates images from X-ray projection data acquired at many 

different angles around the patient. Image reconstruction has a 

fundamental impact on image quality and therefore on 

radiation dose. For a given radiation dose it is desirable to 

reconstruct images with the lowest possible noise without 

sacrificing image accuracy and spatial resolution. 

Reconstructions that improve image quality can be translated 

into a reduction of radiation dose because images of acceptable 

quality can be reconstructed at lower dose.  

http://www.see.ed.ac.uk/~mdavies4/Research/CS/FasterGreedier.pdf
http://www.see.ed.ac.uk/~mdavies4/Research/CS/FasterGreedier.pdf
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Two major categories of methods exist, analytical 

reconstruction and iterative reconstruction. Methods based on 

filtered backprojection (FBP) are one type of analytical 

reconstruction that is currently widely used on clinical CT 

scanners because of their computational efficiency and 

numerical stability. Many FBP-based methods have been 

developed for different generations of CT data-acquisition 

geometries, from axial parallel- and fan-beam CT in the 1970s 

and 1980s to current multi-slice helical CT and cone-beam CT 

with large area detectors. For a general introduction of the 

fundamental principles of CT image reconstruction, please 

refer to Chapter 3 in Kak and Slaney’s book (1). An 

introduction to reconstruction methods in helical and multi-

slice CT can be found in Chapters 9 and 10 in Hsieh’s book 

(2). A review of CT image reconstruction methods used on 

clinical CT scanners can be found in the article by Flohr, et al 

(3). 

Users of clinical CT scanners usually have very limited 

control over the inner workings of the reconstruction method 

and are confined principally to adjusting various parameters 

specific to different clinical applications. The reconstruction 

kernel, also referred to as “filter” or “algorithm” by some CT 

vendors, is one of the most important parameters that affect the 

image quality. Generally speaking, there is a tradeoff between 

spatial resolution and noise for each kernel. A smooth kernel 

generates images with lower noise but with reduced spatial 

resolution. A sharp kernel generates images with higher spatial 

resolution, but increases the image noise. 

The selection of reconstruction kernel should be based on 

specific clinical applications. For example, smooth kernels are 

usually used in brain exams or liver tumor assessment to 

reduce image noise and enhance low contrast detectability. 

Radiation dose associated with these exams is usually higher 

than that for other exams due to the intrinsic lower contrast 

between tissues. On the other hand, sharper kernels are usually 

used in exams to assess bony structures due to the clinical 

requirement of better spatial resolution. Lower radiation dose 

can be used in these exams due to the inherent high contrast of 

the structures.  

Another important reconstruction parameter is slice 

thickness, which controls the spatial resolution in the 

longitudinal direction, influencing the tradeoffs among 

resolution, noise, and radiation dose. It is the responsibility of 

CT users to select the most appropriate reconstruction kernel 

and slice thickness for each clinical application so that the 

radiation dose can be minimized consistent with the image 

quality needed for the examination. 

 
In addition to the conventional reconstruction kernels 

applied during image reconstruction, many noise reduction 

techniques, operating on image or projection data, are also 

available on commercial scanners or as third-party products. 

Many of these methods involve non-linear de-noising filters, 

some of which have been combined into the reconstruction 

kernels for the users’ convenience. In some applications these 

methods perform quite well to reduce image noise while 

maintaining high-contrast resolution. If applied too 

aggressively, however, they tend to change the noise texture 

and sacrifice the low-contrast detectability in the image. 

Therefore, careful evaluation of these filters should be 

performed for each diagnostic task before they are deployed 

into wide-scale clinical usage. Scanning techniques and image 

reconstructions in ECG-gated cardiac CT have a unique impact 

on image quality and radiation dose. Half-scan reconstruction 

is typically used to obtain better temporal resolution. For the 

most widely employed retrospectively ECG-gated helical scan 

mode, the helical pitch is very low (~0.2 to 0.3) in order to 

avoid anatomical discontinuities between contiguous heart 

cycles. A significant dose reduction technique in helical 

cardiac scanning is ECG tube-current pulsing, which involves 

modulating the tube current down to 4% to 20% of the full tube 

current for phases that are of minimal interest. Prospectively 

ECG-triggered sequential (or step-and-shoot) scans are a more 

dose-efficient scanning mode for cardiac CT, especially for 

single-phase studies. An overview of scanning and 

reconstruction techniques in cardiac CT can be found in an 

article by Flohr et al (4). 

Iterative reconstruction has recently received much 

attention in CT because it has many advantages compared with 

conventional FBP techniques. Important physical factors 

including focal spot and detector geometry, photon statistics, 

X-ray beam spectrum, and scattering can be more accurately 

incorporated into iterative reconstruction, yielding lower image 

noise and higher spatial resolution compared with FBP (5). In 

addition, iterative reconstruction can reduce image artifacts 

such as beam hardening, windmill, and metal artifacts. A recent 
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clinical study on an early version of iterative reconstruction 

demonstrated a potential dose reduction of up to 65% (6) 

compared with FBP-based reconstruction algorithms. Due to 

the intrinsic difference in data handling between FBP and 

iterative reconstruction, images from iterative reconstruction 

may have a different appearance (e.g., noise texture) from 

those using FBP reconstruction. Careful clinical evaluation and 

reconstruction parameter optimization will be required before 

iterative reconstruction can be accepted into mainstream 

clinical practice. High computation load has always been the 

greatest challenge for iterative reconstruction and has impeded 

its use in clinical CT imaging. Software and hardware methods 

are being investigated to accelerate iterative reconstruction. 

With further advances in computational technology, iterative 

reconstruction may be incorporated into routine clinical 

practice in the future. 

OMP Algorithm: 

Image reconstruction algorithm based on compressed 

sensing using conjugate gradient is proposed for the first time 

in this paper. Compressed sensing is a technique for acquiring 

and reconstructing a signal or image utilizing the prior 

knowledge that is sparse or compressible. During the past 

several decades scholars have made all sorts of guesses about 

the prior Pr(x) for images in order to find its sparse 

representation and also proposed some available algorithms 

like matching pursuit (MP) and orthogonal matching pursuit 

(OMP) algorithms. Some reconstruction algorithms used the 

convex relaxation method, but the conjugate gradient is a 

method with simpler iterative process and less memory 

requirement compared with the least square and Newton 

iteration. Simulation results show that this image 

reconstruction algorithm based on compressed sensing using 

conjugate gradient gets better performance on time and PSNR 

than OMP algorithm. 

               Input: The measurement y and measurement 

matrix A 

Output: Reconstructed signal x# 

(1) Initialize the residual r0 = y, index set C0 = #and 

counter k=1. 

(2) Find the column vector ack of A that is mostly 

correlated with the residual: 

ck = argmaxc|hrk−1, aci|, c #[n] 

Ck = Ck−1 ∪ {ck} (3) Solve the least-square problem: 

xk = argminx||y − ACkx||2 

where ACk denotes the columns of A indexed by Ck. 

(4) Update the residual to remove the contribution of ack 

rk = y − ACkxk 

(5) Increment k, and go back to step (2) until stopping 

criterion holds. 

(6) Return the output x∗ with x#(i) = xk(i) for i # Ck 

 
              IV. SIMULATION AND RESULT 

To gain some insights into the the effect of the proposed 

SMM-OMP on sparse signal recovery, we evaluate 10000 

independent Monte-Carlo trails, the nonzero variables of sparse 

signal β are generated randomly from a Gaussian distribution 

and subject to  [β]2 =1.the signal length is set to N=48 and the 

number of measurements are set from 16 to 40.The position of 

nonzero variables of β are generated randomly.Consider the 

signal to noise ratio (SNR) as SNR=10dB. We observe that the 

SMM-OMP has a better recovery performance than RMM-

OMP on sparse signal recovery problem,OMP algorithm can 

obtain a better performance if the signal is more sparser. 
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                               V. CONCLUSION 

In this paper, we have developed the filtered CS idea for 

causal reconstruction of medical image sequences from MR 

data and have shown greatly improved reconstruction results 

on MRI data, as compared to CS and its modifications. This is 

the first real application of filtered CS and is considerably more 

difficult than simulation data because the measurement matrix 

for MR is not as incoherent as a random Gaussian matrix and 

because the different wavelet coefficients have vastly different 

magnitudes and variances. Future work will involve a rigorous 

analysis of the proposed algorithmic ideas and using it to 

propose a novel filtered CS based algorithm for compressible 

sequences. compressive sensing technique. 
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