
International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 71-75

71 | P a g e

DEVELOPMENT OF A MULTIAGENT BASED

METHODOLOGY FOR COMPLEX SYSTEMS
Reshma Kazmi, Brijesh Pandey, Namarata dhandha

Goel Institute of Technology and Management

Abstract- Multiagent Based Methodologies have become an

important subject of research in advance Software Engineering.

Several methodologies have been proposed as, a theoretical

approach, to facilitate and support the development of complex

distributed systems. An important question when facing the

construction of Agent Applications is deciding which

methodology to follow. Trying to answer this question, a

framework with several criteria is applied in this paper for the

comparative analysis of existing multiagent system

methodologies. The results of the comparative over two of them,

conclude that those methodologies have not reached a sufficient

maturity level to be used by the software industry. The

framework has also proved its utility for the evaluation of any

kind of Multiagent Based Software Engineering Methodology.

I. INTRODUCTION

In our research, we view Multiagent Software

Engineering as a further abstraction of the object-oriented

paradigm where agents are a specialization of objects. Instead

of simple objects, with methods that can be invoked by other

objects, agents coordinate with each other via conversations

and act proactively to accomplish individual and system-wide

goals. Interestingly, this viewpoint sidesteps the issues

regarding what is or is not an agent. We view agents merely as

a convenient abstraction, which may or may not possess

intelligence. In this way, we handle intelligent and non-

intelligent system components equally within the same

framework. In addition, since we view agents as

specializations of objects, we build on existing object-oriented

techniques and apply them to the specification and design of

multiagent systems.

The primary focus of MaSE is to help a designer take an

initial set of requirements and analyze, design, and implement

a working multiagent system. This methodology is the

foundation for the Air Force Institute of Technology's (AFIT)

agentTool development system, which also serves as a

validation platform and a proof of concept. The agentTool

system is a graphically-based, fully interactive software

engineering tool for the MaSE methodology. agentTool

supports the analysis and design in each of the seven MaSE

steps. The agentTool system also supports automatic

verification of inter-agent communications and code

generation for multiple multiagent system frameworks. The

MaSE methodology, as well as agentTool, is independent of

any particular agent architecture, programming language, or

communication framework. The focus of our work is on

building heterogeneous multiagent systems. We can

implement a multiagent system designed in MaSE in several

different ways from the same design.

Designing and building high quality industrial-strength

software is difficult. Indeed, it has been claimed that such

development projects are among the most complex

construction tasks undertaken by humans. Against this

background, a wide range of software engineering paradigms

have been devised (e.g., procedural programming, structured

programming, declarative programming, object-oriented

programming, design patterns, application frameworks and

component-ware). Each successive development either claims

to make the engineering process easier or to extend the

complexity of applications that can feasibly be built. Although

there is some evidence to support these claims, researchers

continually strive for more efficient and powerful software

engineering techniques, especially as solutions for ever more

demanding applications are required.

This paper will argue that analyzing, designing and

implementing software as a collection of interacting,

autonomous agents (i.e., as a multi-agent system) represents a

promising point of departure for software engineering. While

there is some debate about exactly what constitutes an

autonomous agent and what constitutes interaction, this work

seeks to abstract away from particular dogmatic standpoints.

Instead, we focus on those characteristics for which there is

some consensus. From this standpoint, the paper’s central

hypothesis will be advanced: for certain classes of problem

(that will be defined), adopting a multi-agent approach to

system development affords software engineers a number of

significant advantages over contemporary methods. Note that

we are not suggesting that multi-agent systems are a silver

bullet there is no evidence to suggest they will represent an

order of magnitude improvement in software engineering

produc2tivity. However, we believe that for certain classes of

application, an agent-oriented approach can significantly

improve the software development process.

Seeking to demonstrate the efficacy of the agent-oriented

approach, the most compelling form of analysis would be to

quantitatively show how adopting such techniques had

improved, according to some standard set of software metrics,

the development process in a range of projects. However, such

data is simply not available (as it is still not for more

established methods such as object-orientation). However,

there are compelling arguments for believing that an agent-

oriented approach will be of benefit for engineering certain

complex software systems. These arguments have evolved

from a decade of experience in using agent technology to

construct large-scale, realworld applications in a wide variety

of industrial and commercial domains.

The contribution of this paper is twofold. Firstly, despite

multi-agent systems being touted as a technology that will

have a major impact on future generation software (“pervasive

in every market by the year 2000” and “the new revolution in

software”), there has been no systematic evaluation of why

this may be the case. Thus, although there are an increasing

number of deployed agent applications, nobody has analysed

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 71-75

72 | P a g e

precisely what makes the paradigm so effective. This is clearly

a major gap in knowledge, which this paper seeks to address.

Secondly, there has been comparatively little work on viewing

multi-agent systems

as a software engineering. This shortcoming is rectified by

recasting the essential components of agent systems into more

traditional software engineering concepts, and by examining

the impact on the software engineering life-cycle of adopting

an agent-oriented approach.

II. PROPOSED METHODOLOGY

Figure 1 MAB Methodology

Plans Model: What are the plans and targets that have been

set that should be used to achieve the goal of the agent. The

main plan is to save the forest area and if required then make

suitable arrangements for replantation of the trees along the

project areas or blank spaces.

Goal Model: Goals which have to be achieved by the agents

while working within the system. i.e, less damage to the forest

area and more development.

Triggers Model: This model marks the events and change of

beliefs that occur in the system. This may represent the

different point of view of visualizing particular things which

act as a trigger in the project.

Agent Service Model: Here the responsibilities and

commitments of each agent is described and marks that it is

fulfilled by all agents within the system for the smooth

functioning of the system. i.e. the different agents work

together for the development of the nation keeping in mind

that the forest are to be saved and alternatives to be worked out

before clearance is accorded.

Agent Container: The different behavior of various

agentsvwithin the system design. Different role of agent in

different areas. Different roles and duties of a particular

officer.

Directory Facilitator Model: The default services of the

agents within the system are defined. This defines the roles of

the agents in the ideal stage. Default roles and duties of a

particular officer.

Inter Agent Communication Model: Different

communication protocols between the system and agents. this

model takes care of the inter communication between

different agents within a particular system. Or inter

communication of the agents within the system and from

externals taking into consideration the communication

protocols.

System Requirements Phase

The system requirements phase guides towards the detection

of the system components and their high level behavior

.System components are like (objects, roles , resources etc)

The system requirements phase is concerned with the

description of the system scenario using well known

techniques. The known techniques are such as Use-Cases

Diagrams (UCDs), and UML use case diagrams.The system

requirements phase is composed of the following model

In this model the scenarios of the system as a whole are

described .The description includes components that the

system is composed of and the tasks that have to be performed

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 71-75

73 | P a g e

by each component in the system. How these components

interact with each other and with the external environment is

also illustrated. To fulfill this description tasks, some specific

well-known techniques have been such as User-Case

maps(UCMs) and Use-Case diagrams(UCDs).

The Use-Case maps(UCMs) techniques is a precise structure

notation .It describe the general behavior of the system in the

form of scenarios without reffering to any implementation

details. UCMs include adequate information in a summarized

form. It has two advantages.

1) It enables developers to understand and conceptualize the

behavior of the system as a whole.

2) It gives an explicit concept about how the system operates

as a whole.

In the system scenario model, User-Case diagrams will also

exploited. User-Case diagrams are an UML notation which

describes the behavior of the system from the user point of

view. It is through this notation that the roles in the system can

be recognized .Recognition of roles within a system is a very

helpful during the analysis and design phases as well as for

understanding the system’s requirements.

Analysis Phase

The analysis phase is concerned with the description of agent

architecture and AAS. It is divided into two parts.The first part

deals with agent architecture. The second part deals with AAS

architectures.

The next section provides a detailed description of both

architectures. The agent architecture step describes the internal

structure of agents in the system. On the other hand AAS

architecture step describes the relationship between the agents,

the conversation and exchanged messages and agent

services.This description is important in order to facilitate two

main functions:

1) To enable negotiation and cooperation between agents.

2) To establish commitments and agreements that the agents

should adhere to in order to provide the services to other

agents in the system.

Agent Architecture

This step is concerned with the description of agent’s internal

structures. It describes the following:

1) Roles that the agent should play or perform in the system.

2) Agents that should exist in the system.

3) Goals and plans that each agent should have within.

4) Triggers that each role should be aware of as being events

that take place in the system.

5) Roles Model

In this model the roles that an agent will play in the system

will be stated. The important attributes of each role such as

responsibilities, permissions, perceptions; obligations and

constraints will be described in details.

Responsibilities are the activities that the role is responsible to

perform. Permissions are the authorities related to numbers

and types of resourses that will be exploited by agents in the

system. Obligations are requirements that should be available

to enable the role to start its functionality and carry out its

responsibilities and activities. Constraints are restrictions and

boundaries that the role must not infringe through executing

its tasks.

Agent Model

In the agent model the internal description of agents within the

system are illustrated .The internal structure of an agent is also

described. In this methodology each agent possesses a goal or

more, which it desires to realize .In addition an agent will also

possesses beliefs that it depends on to achieve its goals. These

beliefs can be considered as preconditions to initiate the

achievement of goals for the system agents.

Agent Goals Model

In the agent goals model the goals that the agent desires to

achieve will be identified.

Each goal and its priorities will be identified. Each goal will be

initiated according to a specific priority. The plans which are

prepared by the agent to satisfy the desired goal will also be

identified. This model also contains preconditions and post

conditions to initiate the process of achieving goals that the

agent desires to realize.

Plans Model

In the plans model the plans that have to be performed or have

to be followed by an agent during achieving a specific goal are

recognized. In other words, every goal has to be achieved

through a specific plan or more. Plans may execute in a

sequential manner or according to the priority of each plan or

in parallel manner. This model describes the plan as a set of

tasks executed by the agent. Also includes the names of

interaction protocols that take place between agents in the

system.

Beliefs Model

The agent knowledge is considered as one of the most

important parts of MAB model methodology. It stores relevant

facts about the agent and its environment. Agent knowledge

may be taken to explicitly represent the agent’s beliefs about

its environment or even about itself or about its environment

or even about itself or about other agents. The beliefs model in

MAB model methodology is carried out by following the

scenario of UCMs. This is followed by the transfer of those

scenarios into beliefs according to a specific goal or a specific

plan or both.

Agent Triggers Model

This model describes the mechanism of how the agent

perceives its environment through percepts and how to act on

it through actions. Percepts are information coming from the

environment which has an effect on the behavior of agents.

According to that information the role performs some actions

as a reaction. Actions are the mechanism through which an

agent effects its environment.

There are events in AAS which occur during the system

runtime. There may also be change in agent’s beliefs. These

events and changes in beliefs will trigger some affected agents

to take some actions or reactions as a response to those events

or changed in beliefs. These events and these changes in

beliefs are called triggers. For if these triggers occur in the

system then obviously there must be a party responsible for

generating them. Triggers can be generated by an agent, an

object or some by other party. Any party in a system

generating a trigger is known as a source. There is also another

party in the system which is the party that benefits from the

operation. This is called the beneficiary. The beneficiary

represents the agent who will react to this trigger. All expected

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 71-75

74 | P a g e

events and changes in beliefs in the system can be recognized

through this model.

III. MAB ARCHITECTURE

This step is concerned with the description of AAS

structure. It describes the relationships between the agents in

the system, the conversation and exchanged messages. All this

enable negotiation and cooperation between agents, the

commitments and agreements that agents should adhere to in

order to provide the services to other agents in the system.

Agent Interaction Model

An agent interaction model contains a description of the

interactions between agents in the system where inter-

communication among agents is performed. Therefore,

interaction diagrams were adapted from object oriented design

techniques, and allocated

To agents instead of objects.

The interaction diagrams from the system scenario model will

be developed by capturing the lines that connect agents inside

a use-case maps diagrams and transform them to conversations

within the system. This model represents the primary step of

Inter-agent communication model.

Agent Relationship Model

Agent relationship model is a set of system agents connected

together to satisfy and pursue a common goal. This model

consists of all system agents with the relationships,

dependencies and authorities between system’s agents being

clearly described. The constraints and restrictions that a system

must not encroach will also be described.

Agents Services Model

Agent services model provides a standard mean of inter-

operating between different agent in the system. This model is

intended to provide a common description of an agent

services. The model is intended to provide a common

description of an agent services. The model is also intended to

define the place of the agent services within an agent system.

This guides the agent community to those services easily. A

services is realized by an agent and is used by another agent.

Agent services are captured by means of the messages

exchanged between requester agents and provider agents. The

main goal of the agent services model is to facilitate access to

sevices that are offered by each agent. Also, it organizes the

cooperation between agents through constructing formal

agreement. An agreement maintains agent’s rights by

providing them the ability to obtain those services in time.

Design Phase

The design phase is concerned with the detailed representation

of the models developed in the previous phases and

transforming them into patterns. These patterns are useful for

actually implementing the multi-agent system. This phase

captures key activities including agent structural design,

development strategy and System design specifications. The

design phase has three steps:

1) Creating agent container.

2) ConstructingInter-agent communications.

3) Creating Directory facilitator.

4) Agent Container Model

The agent container will describe the overall system

organization which is composed of agent classes and the

conversations between them. The agent’s behavior is defined

in terms of a container representing agent’s roles in the system

and the conversations in which they participate.

Inter –Agent Communication Mode

This model defines in details interactions among agenta in the

system where communication between agents is established.

To perform this communication between agents, agreed and

accepted protocols have to be defined. these protocols are

related with exchanged knowledge between agents in the

system. Therefore we will exploit Agent Communication

specifications.

Directory Facilitator Model

Directory facilitator model is responsible for providing the

equivalent of a yellow pages directory service to ther agents in

the system. Agents may register their services at the directory

facilitator (DF) or query the DF to find out what services are

offered by other agents. An agent is responsible to provide

information related to service e. g. service type, service name

etc. Furthermore, an agent can also deregister or modify its

service details. Any agent can interact with DF to make its

services public and to identify agents that provide a particular

service.

Implementation Phase

Case Study: Project Clearance System

A brief description of how the project clearance system works

which represent the case study to test and evaluate the new

methodology.

The case study “Project Clearance System” has been chosen

because it is simple and straight forward. It can be used to

illustrate the type of reflective reasoning required by agents

involved in a distributed collaborative environment. It entails a

distributed design process, where several participants needed

to interact with each other. It encompasses and highlights a

number of underlying and interconnected agent concepts.

Project Clearance System

Project Clearance System was designed for Ministry of

Environment & Forest, Central Region. In the regional office

there are two sections one is the Environmental section which

monitors the projects that have been accorded Environment

Clearance and the second section i.e, is the forest is there

accord forest clearance under FC Act 1980 to the projects

submitted by the user agencies.

The services provided by the forest department

1) Different types of clearance to the user agencies for the

constructions of various projects.

2) The user agency can submit the proposal online and being

processed at different levels it is submitted to the Ministry for

final action.

3) Projects once submitted is then evaluated, any further

queries are required that is asked from the concerned authority.

4) If documents evaluated are up to the mark and that project

is required for that place it is accorded clearance and the user

agencies can start with the projects.

5) The projects submitted by the user agency are intimated

with the decision of the Ministry with a set time frame

required for the processing of the project.

6) Project Clearance System has also many bad experiences

with the user agencies such as improper information, fake

information, hiding the facts. In this phase, we deal with a part

International Journal of Technical Research and Applications e-ISSN: 2320-8163,

www.ijtra.com Volume 3, Issue 2 (Mar-Apr 2015), PP. 71-75

75 | P a g e

of Project Clearance System behavior, triggered by the

following kinds of events:

 Accepting projects for the clearance of new and

existing User agencies on various locations.

 According clearance on the set rules and conditions.

 Providing the best services to the user agencies, by

providing them with the progress of the objects

submitted for clearance through their site and written

communication.

 Handling the user agencies more thoroughly with the

whom they found errors in.

The case study is considered to be applied with both UCMs

and UCDs.

Implementation phase

The implementation (or construction) phase is the point in the

development process. When we actually start to construct the

solution. This is the time to start writing the program code. If

the methodology process was followed so far, then a group of

model would have been contructed. They will provide a lot of

guidance for the implementation phase. The models have a

complete set of design specification showing how the agent

system and its components should be structured and organized.

The next step would be to start handling out the various design

specifications and start to build the implementation code step.

Oracle & Developer Platform

The oracle Database (commonly reffered to as RDBMS or

simply as oracle) is an object-relational database management

system (ORDBMS) Produced and marketed by oracle

corporation. Oracle Database suite is a suite of development

tools realesed by oracle corporation. The principal components

were initially Oracle Forms and Oracle Reports .The

Developer interface became more similar over time and they

were eventually group together as Oracle IDE (integrated

Development Environment). Oracle Forms is a software

product for creating screens that interact with an Oracle

database. It has an IDE including an object navigator, property

sheet and code editor that uses PL/SQL. It was originally

developed to run server –side in character mode terminal

sessions .It was ported to other platforms, including Windows,

to function in a client-server environment. Later version were

ported to Java where it runs in a J2EE container and can

integrate with Java and Web sevices. Oracle Reports is a tool

for developing reports against data stored in an Oracle

database. Oracle Reports consists of Oracle Reports

developer(a component of the Oracle Develop Suite) and

Oracle Application Server Reports Services J Developer is a

freeware IDE supllied by Oracle Corporation .It offers

features for development in Java , XML , SQL and PL/SQL

,HTML, JavaScript, BPEL and PHP. J Developer covers the

full development lifecycle from design through coding,

debugging, optimization and profiling to deploying. With J

Develper, Oracle has aimed to simplify application

development in addition to building an advanced coding-

environment. Oracle J Developer integrates with the Oracle

Application Development Framework(Oacle ADF) . The IDE

platform also serves as the basis of another Oracle product,

SQL Developer, which Oracle Corporation promotes

specifically to PL/SQL-and database-developers.

IV. CONCLUSIONS

In this article, we have described why we perceive agents

to be a significant technology for software engineering. We

have discussed in detail how the characteristics of certain

complex systems appear to indicate the appropriateness of an

agent-based solution: as with objects before them, agents

represent a natural abstraction mechanism with which to

decompose and organize complex systems. In addition, we

have summarized some of the key issues in the specification,

implementation, and verification of agent-based systems, and

drawn parallels with similar work from more mainstream

computer science. In particular, we have shown how many of

the formalisms and techniques developed for specifying,

implementing, and verifying agent systems are closely related

to those developed for what are known as reactive systems in

mainstream computing. Finally, we have described some of

the pitfalls of agent-based development. Software engineering

for agent systems is at an early stage of development, and yet

the widespread acceptance of the concept of an agent implies

that agents have a significant future is software engineering. If

the technology is to be a success, then its software engineering

aspects will need to be taken seriously. Probably the most

important outstanding issues for agent-based software

engineering are: (i) an understanding of the situations in which

agent solutions are appropriate; and (ii) principled but

informal development techniques for agent systems. While

some attention has been given to the latter (in the form of

analysis and design methodologies for agent systems), almost

no attention has been given to the former.

REFERENCES

[1] A. van Lamsweerde, and E. Letier, “Handling Obstacles in

Goal-Oriented Requirements Engineering,” IEEE Transactions

on Software Engineering vol. 26(10), pp. 978-1005, 2000.

[2] A. Cockburn, "Structuring Use Cases with Goals,” Journal of

Object-Oriented Programming, Sep-Oct, 1997 and Nov-Dec,

1997.

[3] S. A. DeLoach and M. Wood, "Developing Multiagent Systems

with agentTool," in Y. Lesperance and C. Castelfranchi,

editors, Intelligent Agents VII - Proceedings of the 7th

International Workshop on Agent Theories, Architectures, and

Languages (ATAL'2000).

[4] Springer Lecture Notes in AI, Springer Verlag, Berlin, 2001.

[5] P. K. Harmer, G. B. Lamont, G.B, "An Agent Architecture for

a Computer Virus Immune System," in Workshop on Artificial

Immune Systems at Genetic and Evolutionary Computation

Conference, Las Vegas, Nevada, July 2000.

[6] G. J. Holzmann, “The Model Checker Spin,” IEEE

Transactions On Software Engineering, vol. 23(5), pp. 279-295,

1997.

[7] M. Wooldridge (1997) “Agent-based software engineering”

IEE Proc. on Software Engineering, 144 (1) 26-37.

[8] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens

(1989) “Concurrent MetateM: A framework for programming

in temporal logic” REX Workshop on Stepwise Refinement of

Distributed Systems: Models, Formalisms, Correctness (LNCS

Volume 430), 94-129. Springer-Verlag.

[9] J. R. Marden and A. Wierman, “Overcoming limitations of

game-theoretic distributed control,” in Proc. 47th IEEE Conf.

Decision Control, Dec. 2009, pp. 6466–6471.

