
International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP.72-77 

72  | P a g e 

 

 

Comparative Study of Frequent Itemset Mining 

Algorithms: FP growth, FIN, Prepost + and study of 

Efficiency in terms of Memory Consumption, 

Scalability and Runtime 
1 Mrs. Bharati K, 2 Prof. Kanchan Doke 

1,2 Department of Computer Engineering BVCOE, Kharghar, Navi Mumbai- 400703. 
1 bharati.sagi@gmail.com,2 kanchankdoke@gmail.com 

 

 
Abstract— Data mining represents the process of extracting 

interesting and previously unknown knowledge (patterns) from 

data. Frequent pattern mining has become an important data 

mining technique and has been a focused area in research field. 

Frequent patterns are patterns that appear in a data set most 

frequently. Various methods have been proposed to improve the 

performance of frequent pattern mining algorithms. An 

association rule expresses the dependence of a set of attribute- 

value pairs, called items, upon another set of items (item set).The 

association rule mining algorithms can be classified into two  

main groups: the level-wise algorithms and the tree-based 

algorithms. The level-wise algorithms scan the entire database 

multiple time but they have moderate memory requirement. The 

two phase algorithms scan the database only twice but they can 

have extremely large memory requirement. In this research, 

Performance study has been done which shows the advantages 

and disadvantage of algorithms used in association rules mining 

FP growth, Prepost+ and FIN. The main goal of this research is  

to explore the overview of the current research being carried out 

using the data mining techniques. 
 

Keywords— Frquent Itemset Mining, FP Tree, FIN, Prepost. 

 

 
I. INTRODUCTION 

 
Pattern mining algorithms can be applied on various types of 

data such as transaction databases, sequence databases, 

streams, strings, spatial data, graphs, etc. 

Pattern mining algorithms can be designed to discover various 

types of patterns: subgraphs, associations, frequent Itemset 

mining(FIM), indirect associations, trends, periodic patterns, 

sequential rules, lattices, sequential patterns, high-utility 

patterns, etc. There are two stages in association rules mining. 

1)  To  find  all  frequent  itemsets.  2) To  generate  reliable 

association rules from all frequent itemsets. 

There are following types/ways to perform FIM 1) algorithms for 

discovering frequent itemsets from a transaction database. 2) 

algorithms for discovering frequent closed itemsets from a 

transaction database. 3) algorithms for discovering frequent 

maximal itemsets from a transaction database. 4) algorithms 

for mining frequent itemsets with multiple minimum  supports 

5) algorithms for mining generator itemsets from a transaction 

database   6)   algorithms   for   mining   rare   itemsets  and/or 

 

correlated itemsets from a transaction database 7) algorithms 

for performing targeted and dynamic queries about association 

rules and frequent itemsets. 8) algorithms to discover frequent 

itemsets from a stream 9) the U-Apriori algorithm for mining 

frequent itemsets from uncertain data 10) the VME algorithm 

for mining erasable itemsets. 11) Unique Constraint Frequent 

Itemset Mining. 

II. FIM 

 
Let I = {I1, I2 ,….In} be a set of items. Let D, the task relevant 

data, be a set of transactions in a supermarket, where each 

transaction T is a set of items, such that T I. Each transaction 

is assigned an identifier called TID. Let A be a set of items, a 

transaction T is said to contain A if and only if AT. An 

association rule is an implication of the form AB, where 

AI, BI, and A∩B=. The rule AB holds in the 

transaction set D with support s, where s is the percentage of 

transactions in D that contain AB (i.e., both A and B). This is 

taken to be the probability P(AB). The rule AB has 

confidence c in the transaction set D if c is the percentage of 

transactions in D containing A that also contain B. This is 

taken to be the conditional probability, P(B|A). That is, Support 

(AB) = P(AB) = s, Confidence (AB) = P(B|A) =Support 

(AB)/Support (A)=c. Thus association rules is composed of 

the following two steps: 1) Find the large item sets that have 

transaction support above a minimum support and 2) From the 

discovered large item sets generate the desired association 

rules. 

  
 

TABLE 1- Transaction database 

TID  Transactions 

1 a, f, g 

2 a, b, c, e 

3 b, c, e, i 

4 b, c, e, h 

5 b, c, d, e, f 

http://www.ijtra.com/
mailto:kanchankdoke@gmail.com


International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP.72-77 

73  | P a g e 

 

 

 

 

 

 

 

 

 

 

TABLE 2- Ordered frequent itemsets of table-1 

 
Frequent 1-itemsets set F1 = {a, b, c, e, f}. Note that, the Table II 

is the succinct version. 

In Table 2, all infrequent items are eliminated and frequent items 

are listed in support-descending order. This ensures that the DB 

can be efficiently represented by a compressed tree structure. 

III. SURVEY OF FP-GROWTH, PREPOST +, FIN ALGORITHMS 

 
There are two phases to deal with association rule mining. First 

one is about the algorithm efficiency. The research on 

developing an algorithm with less computation complexity is 

one of the most interesting topics related to association rule 

mining. The mining efficiency is so important because 

association rule mining always works on large database. The 

number of rules grows exponentially with the number of items. 

The related work mainly focus on efficient pruning on large 

data sets and reducing the times of scanning data. Second 

phase is to find the effective ways needed to select interesting 

rules from discovered rules. 

A. The FP-Growth algorithm 

Frequent pattern growth (FP-Growth) was introduced by Han, 

Pei, and Yin in 2000 to forego candidate generation. It Inserts 

sorted items by frequency into a pattern tree or FP-tree. 

Definition - A frequent-pattern tree is a tree structure defined 

below. 

1. It consists of one root labeled as “null”, a set of item-prefix 

subtrees as the children of the root, and a frequent-item-header 

table. 

2. Each node in the item-prefix subtree consists of three fields: 

item-name, count, and node-link, where item-name registers 

which item this node represents, count registers the number of 

transactions represented by the portion of the path reaching this 

node, and node-link links to the next node in the FP-tree 

carrying the same item-name, or null if there is none. 

3. Each entry in the frequent-item-header table consists of two 

fields, (1) item-name and (2) head of node-link (a pointer 

pointing to the first node in the FP-tree carrying the item- 

name). 

Based on this definition, we have the following FP-tree 

construction algorithm. 

Algorithm (FP-tree construction) 

Input: A transaction database DB and a minimum support 

threshold s. 

Output: The frequent-pattern tree of DB. 

Method: The FP-tree is constructed as follows. 

1. Scan the transaction database DB once. Collect F, the set of 

frequent items, and the support of each frequent item. Sort F in 

support-descending order as FList, the list of frequent items. 

2. Create the root of an FP-tree, T, and label it as “null”. 

For each transaction Trans in DB do the following. 

Select the frequent items in Trans and sort them according to the 

order of FList. Let the sorted frequent-item list in Trans be [p | 

P], where p is the first element and P is the remaining list. Call 

insert tree([p | P], T ). The function insert tree([p | P], T ) is 

performed as follows. If T has a child N such that N.item-name 

= p.item-name, then increment N’s count by 1; else create a 

new node N, with its count initialized to 1, its parent link 

linked to T , and its node-link linked to the nodes with the same 

item-name via the node-link structure. If P is nonempty, call 

insert tree(P, N) recursively. 

Analysis- The FP-tree construction takes exactly two scans of the 

transaction database: The first scan collects the set of frequent 

items, and the second scan constructs the FP-tree. The cost of 

inserting a transaction Trans into the FP-tree is 

O(|freq(Trans)|), where freq(Trans) is the set of frequent items 

in Trans. 

Example- Let the transaction database, DB, be represented by the 

information from Table 1 and s = 0.4. The frequent 1-itemsets 

set F1 = {a, b, c, e, f}. Fig. 1 shows the FP tree resulting from 

Example. 

 
Fig 1- FP Tree 

B. PrePost and PrePost+ algorithms 

PrePost was introduced by DENG ZhiHong∗, WANG 

ZhongHui & JIANG JiaJian in 2012 to forego candidate 

generation 

PrePost adopts a prefix tree structure called PPC-tree to 

store the database. Each node in a PPC-tree is assigned with a 

Pre-Post code via traversing the PPC-tree with Pre and Post 

order. Based on the PPC-tree with Pre-Post code, each frequent 

item can be represented by an N-list, which is the list of PP- 

codes that consists of pre-order code, post-order code, and 

count of nodes registering the frequent item. Like other vertical 

algorithms, PrePost adopts the Apriori-like approach to find 

frequent itemsets. That is, it gets N-lists of the candidate 

itemsets of length (k + 1) by intersecting N-lists of frequent 

itemsets of length k and thus discovers the frequent itemsets of 

length (k + 1). However, PrePost can directly mine frequent 

itemsets without generating candidates in some cases. 

TID FLIST 

1 a, f 

2 b, c, e, a 

3 b, c, e 

4 b, c, e 

5 b, c, e, f 

http://www.ijtra.com/


International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP.72-77 

74  | P a g e 

 

 

Figure 2 shows the PPC-tree resulting from Example 1. The 

node with (4, 8) means that its pre-order is 4, post-order is 8, 

the item-name is b, and count is 4. Note that the PPC-tree is 

constructed using Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2- PPC tree (Preorder Postorder Tree) 

Fig. 2 shows the PPC-tree resulting from Example 1. The 

node with (3, 6) means that its pre-order is 3, post-order is 6, 

the itemname is b, and count is 4. 

Prepost + introduced by Zhi-Hong Deng ⇑ , Sheng-Long 

Lv in 2015 to introduce Children–Parent Equivalence pruning 

technique into PrePost to promote its performance. PrePost+ 

adopts a set-enumeration tree to represent the search space. 

Given a set of items I = {i1, i2, ..., im} where i1 i2  ...  im, 

a set-enumeration tree can be constructed as follows. 

Firstly, the root of the tree is created. 

Secondly, the m child nodes of the root registering and 

representing m 1-itemsets are created, respectively. 

Thirdly, for a node representing itemset {ijs i-1...ij1} and 

registering ijs, the (m - js) child nodes of the node representing 

itemsets {ijs+1ijsi-1...ij1}, {ijs+2ijsi-1...ij1},..., {imiijs-1...ij1} 

and registering ijs+1, ijs+2,..., im respectively are created. 

Finally, the set-enumeration tree is built by executing the third 

step repeatedly until all leaf nodes are created. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3- A set-enumeration tree 

The set-enumeration tree for finding frequent itemsets is 

depicted in Fig. 3. For example, the node in the bottom left of 

Fig. 3 represents itemset {bceaf} and registers item b. 

FIN algorithm 

FIN (Fast mining frequent itemsets using Nodesets) 

introduced by Zhi-Hong Deng, Sheng-Long Lv in 2014 are 

based on a POC-tree Pre-Order Coding tree. 

Definition POC-tree is a tree structure: (1) It consists of one 

root labeled as ‘‘null’’, and a set of item pre- fix subtrees as the 

children of the root. (2) Each node in the item prefix subtree 

consists of five fields: item-name, count, children-list, pre- 

order. item-name registers which item this node represents. 

count registers the number of transactions presented by the 

portion of the path reaching this node. children-list registers all 

children of the node. preorder is the pre-order rank of the node. 

The framework of FIN consists of: (1) Construct the POC-tree 

and identify all frequent 1-itemsets; (2) scan the POC-tree to 

find all frequent 2-itemsets and their Nodesets; (3) mine all 

frequent k(>2)-itemsets. For enhancing the efficiency of 

mining frequent itemsets, FIN adopts promotion, which is 

based on superset equivalence property, as pruning strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4- POC tree (Preorder Tree) 

 

Fig. 4 shows the POC-tree which is constructed from the 

database shown in Example 1 after executing Algorithm. The 

number outside of a node is the pre-order of the node. Note that 

the POC-tree is also constructed using Table 2. 

IV. COMPARISON TABLE 

The following Comparison Table shows comparison between 

all these algorithms in terms of scalability, runtime, memory 

consumption, advantages and Disadvantages. 

 

Author’s Name and Paper 

Title 
Technique Characteristics Limitations Comparison of 

Efficiency in 

terms of 

scalability, 

Advantages 

http://www.ijtra.com/


International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP.72-77 

75  | P a g e 

 

 

 

    runtime, memory 

consumption 
 

FP-Growth algorithm 

Han, Pei, and Yin 

1.a data 

structure, 

called 

frequent- 

pattern tree, or 

FP-tree is 

constructed. 

 

2. an FP-tree- 

based pattern- 

fragment 

growth mining 

method  is 

developed, 

which starts 

from a 

frequent 

length-1 

pattern. 

 

3. constructs 

its conditional 

FP-tree, and 

performs 

mining 

recursively 

with such a 

tree. 

 

4. A partition 

based search 

technique is 

employed 

The major 

operations of 

mining are count 

accumulation and 

prefix path count 

adjustment 

FP-growth 

method 

becomes 

inefficient 

when 

datasets are 

sparse 

 

because FP- 

trees become 

very 

complex and 

larger. 

If Datasets 

contain abundant 

mixture of long 

and  short 

frequent patterns, 

FP-tree is 

compact most of 

the time. 

 

When support is 

very low, FP-tree 

becomes bushy. 

 

The advantages 

of       FP-growth 

over Apriori 

becomes obvious 

when the dataset 

contains an 

abundant number 

of mixtures of 

short and long 

frequent patterns. 

 

FP-growth is 

faster than 

Apriori. 

1.FP-growth method 

is efficient and 

scalable for mining 

both long and short 

frequent patterns, 

and is about an order 

of magnitude faster 

than the Apriori 

algorithm and also 

faster than some 

recently reported 

new frequent-pattern 

mining methods. 

 

2. Best one in terms 

of memory 

consumption. 

PrePost and PrePost+ 

algorithms 

 

Zhi-Hong Deng, Sheng- 

Long Lv 

Here PPC-tree 

structure is 

used. 

 

PrePost+ 

employs a 

more efficient 

data structure, 

namely N-list 

 

 

PrePost+ 

adopts 

superset 

equivalence as 

PrePost+ is 

effective 

 

and performs 

better than 

PrePost on all 

datasets in terms 

of runtime 

 

and memory 

consumption. 

PrePost+ 

consumes a 

bit more 

memory than 

FP-growth 

PrePost+ is the 

fastest one 

among all 

algorithms 

 

for each 

minimum 

support. FP- 

growth is slower 

than 

 

PrePost and FIN 

for high 

minimum 

support. 

1.PrePost+ always 

performs best 

compared to FP- 

growth no matter 

which dataset is used 

and what the 

minimum threshold 

is. 

 

2.PrePost+ avoids 

generating lots of 

redundant N-lists 

 

3.In most cases, the 

memory    consumed 

http://www.ijtra.com/


International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP.72-77 

76  | P a g e 

 

 

 

 pruning 

strategy while 

PrePost adopts 

single path 

property of N- 

list as pruning 

strategy. 

 

# visited nodes 

of PrePost is 

larger than # 

visited nodes 

of PrePost+ 

  However,  for 

low minimum 

 

support, FP- 

growth becomes 

more efficient 

and is faster 

 

than PrePost and 

FIN. PrePost is 

always  faster 

than FIN.  For 

low 

 

minimum 

support, such as 

50%, PrePost+ is 

faster than FIN, 

Prepost+ 

outperforms 

PrePost by a 

factor of 3 

 

and  FP-growth 

by a factor of 2. 

by PrePost+ is less 

than 1.3 times the 

memory consumed 

by FP-growth. 

 

4.when the 

minimum support 

becomes small, the 

runtime of PrePost 

increase faster than 

that of FIN and FP- 

growth 

FIN algorithm 

 
Fast mining frequent 

itemsets using Nodesets 

 

Zhi-Hong Deng , Sheng- 

Long Lv 

Works on the 

principle of 

Pre-Order 

Coding (POC) 

tree. 

 

(1) Construct 

the POC-tree 

and  identify 

all subsequent 

frequent 

itemsets  (2) 

scan the POC- 

tree to find all 

frequent 

itemsets and 

their  Nodesets 

(3) mine all 

frequent 

itemsets 

encodes  each 

node of a POC- 

tree with only pre- 

order (or post- 

order) 

when the 

minimum 

support 

becomes 

small, the 

runtime of 

FIN is lesser 

compared to 

Prepost. 

scalability  of 

FIN is  better 

than FPgrowth 

 

Efficiency same 

as Prepost 

1.FIN run faster than 

PrePost and 

FPgrowth⁄ on the 

whole. 

 

2. FIN consumes 

much less memory 

than PrePost on 

dense datasets 

 

3.It is scalable. 

 

4. Number       of 

candidates that 

needs to be stored in 

FIN is much less 

than that in PrePost+ 

. 

 

CONCLUSIONS 

 

There are several advantages of FP-growth over other 

approaches: (1) It constructs a highly compact FP-tree, which 

is usually substantially smaller than the original database and 

thus saves the costly database scans in the subsequent mining 

processes. (2) It applies a pattern growth method which 

avoids costly candidate generation and test by successively 

concatenating frequent 1-itemset found in the (conditional) FP- 

trees. 

http://www.ijtra.com/


International Journal of Technical Research and Applications e-ISSN: 2320-8163, 

www.ijtra.com Volume 4, Issue 6 (Nov-Dec 2016), PP.72-77 

 

77 | P a g e   

Besides adopting N-lists to represent itemsets, PrePost+ 

employs an efficient pruning strategy named Children–Parent 

Equivalence pruning to greatly reduce the search space. 

Although PrePost+ runs fastest, it consumes more memory 

than FP-growth. Based on Nodesets, an efficient algorithm 

called FIN is proposed to mine frequent itemsets in databases. 

The advantage of Nodeset lies in that it encodes each node of a 

POC-tree with only pre-order (or post-order). This causes that 

Nodesets consume less memory and are easy to be constructed. 

The extensive experiments show that the Nodeset structure is 

efficient and FIN run faster than PrePost and FPgrowth⁄ on the 

whole. Especially, FIN consumes much less memory than 

PrePost on dense datasets. 

REFERENCES 

 
[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. 

Verkamo.: Fast discovery of association rules- In Advances in 

Knowledge Discovery and Data Mining (1 996). 

[2] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern 

mining: Current status and future directions,” Data Mining 

Knowledge Discovery, vol. 15, no. 1, pp. 55–86, Aug. 2007. 

[3] Bay Vo, Tuong Le: A Hybrid Approach for Mining Frequent 

Itemsets. 

[4] O.Jamsheela, Raju.G: Frequent Itemset Mining Algorithms :A 

Literature (2015)Survey 

[5] Muhammad Asif, Jamil Ahmed : Analysis of Effectiveness of 

Apriori and Frequent Pattern Tree Algorithm in Software 

Engineering Data Mining 

 

[6] PrePost+ : An efficient N-lists-based algorithm for mining 

frequent itemsets via Children–Parent Equivalence pruning 

Expert Systems with Applications journal homepage: 

www.elsevier.com/locate/eswa 

[7] L Greeshma, Dr. G Pradeepini: Unique Constraint  Frequent  

Item Set Mining 2016 

[8] Zhi-Hong Deng ⇑ , Sheng-Long Lv: Fast mining frequent 

itemsets using Nodesets (2014) 

[9] www.philippe-fournier- 

viger.com/spmf/index.php?link=algorithms.php. 

http://www.ijtra.com/
http://www.elsevier.com/locate/eswa

