Abstract
Numerical simulations have been undertaken
for the benchmark problem in a Square cavity by using
computational fluid dynamics software. This work aims at
discussing the fundamental numerical and computational
fluid dynamic aspects which can lead to the definition of
the following meshing methods and turbulence models.
The meshes used for the simulation are hexahedral,
hexahedral cell with near wall refinement, tetrahedral
grid, polyhedral, tetrahedral with near wall refinement
and polyhedral mesh with prism layer cells based the near
wall thickness of Y+ less than one. The turbulence models
used for the simulation work are AKN K-Epsilon Low-Re,
Realizable K-Epsilon, Realizable K-Epsilon Two-Layer,
standard K-Epsilon, standard K-Epsilon Low-Re,
Standard K-Epsilon Two-Layer, V2F K-Epsilon,
SST(Menter) K-Omega, and Standard(Wilcox) K-Omega.
From these meshes and turbulence models, we will
conclude the suitable mesh and turbulence for the
recirculation flow by the grid independent test. These
analytical values of results are compared with reference
data which gives an optimization of experimental work.
Unsteady simulation was ran for all the Grid Independent
mesh with the SST k omega model with the time step of
0.01 sec for 40 seconds. The flow nature is studied with
and without the temperature for Reynolds number, 1000
and 10000.