Abstract
Continuous Stirred Tank Reactor (CSTR) here is
considered as a nonlinear process. The CSTR is widely used in
many chemical plants. Due to changes in process parameters the
accuracy of final product can be reduced. In order to get accurate
final product the faults developed in CSTR during the chemical
reaction need to be diagnosed. If not, the faults may lead to
degrade the performance of the system. For this purpose there
are various fault diagnosis methods are to be considered. Among
the methods, the neural network predictive controller can be used
to detect faults in CSTR. Servo response is performed to
understand the behavior of CSTR. By detecting various faults
and with suitable control techniques, the accuracy of the
desirable products in CSTR can be improved