Abstract
Diffusers are extensively used in centrifugal
compressors, axial flow compressors, ram jets, combustion
chambers, inlet portions of jet engines and etc. A small change in
pressure recovery can increases the efficiency significantly.
Therefore diffusers are absolutely essential for good turbo
machinery performance. The geometric limitations in aircraft
applications where the diffusers need to be specially designed so
as to achieve maximum pressure recovery and avoiding flow
separation.
The study behind the investigation of flow separation in a planar
diffuser by varying the diffuser taper angle for axisymmetric
expansion. Numerical solution of 2D axisymmetric diffuser model
is validated for skin friction coefficient and pressure coefficient
along upper and bottom wall surfaces with the experimental
results of planar diffuser predicted by Vance Dippold and
Nicholas J. Georgiadis in NASA research center [2].
Further the diffuser taper angle is varied for other different
angles and results shows the effect of flow separation were it is
reduces i.e., for what angle and at which angle it is just avoided.